Solveeit Logo

Question

Question: How do you prove \(1-\dfrac{{{\cos }^{2}}x}{1+\sin x}=\sin x\)?...

How do you prove 1cos2x1+sinx=sinx1-\dfrac{{{\cos }^{2}}x}{1+\sin x}=\sin x?

Explanation

Solution

We have sum of two terms in the left-hand side of 1cos2x1+sinx=sinx1-\dfrac{{{\cos }^{2}}x}{1+\sin x}=\sin x. We use the identities sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 for the numerator. Then we use the identity of a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) to factor the numerator. We complete the division and the binary operations to get the final answer.

Complete step by step solution:
We now use the identity theorem of trigonometry sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 which gives us cos2x=1sin2x{{\cos }^{2}}x=1-{{\sin }^{2}}x.
We place the value in the numerator of the equation cos2x1+sinx\dfrac{{{\cos }^{2}}x}{1+\sin x} and get cos2x1+sinx=1sin2x1+sinx\dfrac{{{\cos }^{2}}x}{1+\sin x}=\dfrac{1-{{\sin }^{2}}x}{1+\sin x}.
The left side of the equation 1cos2x1+sinx1-\dfrac{{{\cos }^{2}}x}{1+\sin x} gives 1cos2x1+sinx=11sin2x1+sinx1-\dfrac{{{\cos }^{2}}x}{1+\sin x}=1-\dfrac{1-{{\sin }^{2}}x}{1+\sin x}.
The numerator is in the form of a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right). We now apply the identity theorem for the term 1sin2x1-{{\sin }^{2}}x. We assume the values a=1,b=sinxa=1,b=\sin x.
Applying the theorem, we get 1sin2x=(1+sinx)(1sinx)1-{{\sin }^{2}}x=\left( 1+\sin x \right)\left( 1-\sin x \right).
The equation becomes 1sin2x1+sinx=(1+sinx)(1sinx)(1+sinx)\dfrac{1-{{\sin }^{2}}x}{1+\sin x}=\dfrac{\left( 1+\sin x \right)\left( 1-\sin x \right)}{\left( 1+\sin x \right)}.
We can now eliminate the (1+sinx)\left( 1+\sin x \right) from both denominator and numerator.
The equation becomes 1sin2x1+sinx=(1sinx)\dfrac{1-{{\sin }^{2}}x}{1+\sin x}=\left( 1-\sin x \right).
The final solution is 1cos2x1+sinx=1(1sinx)=11+sinx=sinx1-\dfrac{{{\cos }^{2}}x}{1+\sin x}=1-\left( 1-\sin x \right)=1-1+\sin x=\sin x.
Thus verified 1cos2x1+sinx=sinx1-\dfrac{{{\cos }^{2}}x}{1+\sin x}=\sin x.

Note: It is important to remember that the condition to eliminate the (1+sinx)\left( 1+\sin x \right) from both denominator and numerator is (1+sinx)0\left( 1+\sin x \right)\ne 0. The simplified form is sinx1\sin x\ne -1. No domain is given for the variable xx. The value of sinx1\sin x\ne -1 is essential. The simplified condition will be xnπ(1)nπ2,nZx\ne n\pi -{{\left( -1 \right)}^{n}}\dfrac{\pi }{2},n\in \mathbb{Z}.