Solveeit Logo

Question

Question: How do you plot the polar coordinate \( \left( {3,{{150}^ \circ }} \right) \) ?...

How do you plot the polar coordinate (3,150)\left( {3,{{150}^ \circ }} \right) ?

Explanation

Solution

Hint : As we know that the polar coordinate is like an alternative to the Cartesian coordinate system. On one hand the Cartesian system determines the position east and north of a fixed point while on the other hand the polar coordinates determine the location using direction and distance of a fixed point.

Complete step by step solution:
We first locate the angle of the polar coordinate plane and then we can plot the values.
As we know that a polar coordinate (r,θ)\left( {r,\theta } \right) in a Cartesian coordinate is (rcosθ,rsinθ)\left( {r\cos \theta ,r\sin \theta } \right) .
So the value of (3,150)\left( {3,{{150}^ \circ }} \right) in polar coordinate is (3cos150,3sin150)\left( {3\cos {{150}^ \circ },3\sin {{150}^ \circ }} \right) .
Now, we know that the value of cos150\cos {150^ \circ } as (32)\left( { - \dfrac{{\sqrt 3 }}{2}} \right) and sin150\sin {150^ \circ } is (12)\left( {\dfrac{1}{2}} \right) .
So the Cartesian coordinate is (3×32,3×12)\left( {3 \times \dfrac{{ - \sqrt 3 }}{2},3 \times \dfrac{1}{2}} \right) .
(332,32)\Rightarrow \left( {\dfrac{{ - 3\sqrt 3 }}{2},\dfrac{3}{2}} \right)
(332,32)\Rightarrow \left( {\dfrac{{ - 3\sqrt 3 }}{2},\dfrac{3}{2}} \right)
(2.59807,1.5)\Rightarrow \left( { - 2.59807,1.5} \right)
Hence we can plot these values as the polar coordinates.

Note : We should note that in the above solution we have used the angle sum identity to find the values of sin150\sin {150^ \circ } and cos150\cos {150^ \circ } . We can write sin150\sin {150^ \circ } as sin(18030)\sin \left( {{{180}^ \circ } - {{30}^ \circ }} \right) .
Also we know that sin(180θ)=sinθ\sin \left( {{{180}^ \circ } - \theta } \right) = \sin \theta . So, sin(18030)=sin30\sin \left( {{{180}^ \circ } - {{30}^ \circ }} \right) = \sin {30^ \circ } which gives us the value sin150=12\sin {150^ \circ } = \dfrac{1}{2} .
Similarly we can find the value of cos150\cos {150^ \circ } as it can be written as cos(18030)=cos30\cos \left( {{{180}^ \circ } - {{30}^ \circ }} \right) = - \cos {30^ \circ } . There is a negative sign in the cosine value. So, cos150=32\cos {150^ \circ } = \dfrac{{ - \sqrt 3 }}{2} .