Solveeit Logo

Question

Question: How do you multiply \[{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}\] in trigonometric form?...

How do you multiply eπ2i.e3π2i{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}} in trigonometric form?

Explanation

Solution

This question belongs to the topic polar system of the chapter complex numbers. For solving this question, we should know about Euler’s identity. The Euler’s identity is eix=cosx+isinx{{e}^{ix}}=\cos x+i\sin x. And, also for solving this question, we should know some formulas like the following:
i2=1{{i}^{2}}=-1
ea×eb=ea+b{{e}^{a}}\times {{e}^{b}}={{e}^{a+b}}.

Complete step by step answer:
Let us solve this question.
In this question, we have asked to find the value of eπ2i.e3π2i{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}} in trigonometric form.
Let us first find the value of eπ2i{{e}^{\dfrac{\pi }{2}i}} and e3π2i{{e}^{3\dfrac{\pi }{2}i}} in trigonometric form separately.
To convert in trigonometric form, we will use the formula here is eix=cosx+isinx{{e}^{ix}}=\cos x+i\sin x
eπ2i=cosπ2+isinπ2{{e}^{\dfrac{\pi }{2}i}}=\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2}
As we know that the value of cosπ2\cos \dfrac{\pi }{2} is 0 and the value of sinπ2\sin \dfrac{\pi }{2} is 1. So, we can write the above equation as
eπ2i=0+i×1=i\Rightarrow {{e}^{\dfrac{\pi }{2}i}}=0+i\times 1=i
Now, let us convert the second term.
e3π2i=cos3π2+isin3π2{{e}^{3\dfrac{\pi }{2}i}}=\cos 3\dfrac{\pi }{2}+i\sin 3\dfrac{\pi }{2}
As we know that cos3π2=0\cos \dfrac{3\pi }{2}=0 and sin3π2=1\sin \dfrac{3\pi }{2}=-1. So, after using these formulas in the above equation, we get
e3π2i=0+i×(1)=i\Rightarrow {{e}^{3\dfrac{\pi }{2}i}}=0+i\times (-1)=-i
Now, we get that eπ2i=i{{e}^{\dfrac{\pi }{2}i}}=i and e3π2i=i{{e}^{3\dfrac{\pi }{2}i}}=-i. Here, ii and i-i are the trigonometric forms of eπ2i{{e}^{\dfrac{\pi }{2}i}} and e3π2i{{e}^{3\dfrac{\pi }{2}i}} respectively.
So, we can find out the value of the term which is multiplication of eπ2i{{e}^{\dfrac{\pi }{2}i}} and e3π2i{{e}^{3\dfrac{\pi }{2}i}} that is eπ2i.e3π2i{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}.
Hence, eπ2i.e3π2i=eπ2i×e3π2i{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}={{e}^{\dfrac{\pi }{2}i}}\times {{e}^{3\dfrac{\pi }{2}i}}
As we have find the values of eπ2i{{e}^{\dfrac{\pi }{2}i}} and e3π2i{{e}^{3\dfrac{\pi }{2}i}}, so we will put their values in the above equation, we get
eπ2i.e3π2i=eπ2i×e3π2i=i×(i)\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}={{e}^{\dfrac{\pi }{2}i}}\times {{e}^{3\dfrac{\pi }{2}i}}=i\times \left( -i \right)
eπ2i.e3π2i=i×i=i2\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}=-i\times i=-{{i}^{2}}
As we know that i2=1{{i}^{2}}=-1, using this in the above equation, we get
eπ2i.e3π2i=i2=(1)\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}=-{{i}^{2}}=-(-1)
eπ2i.e3π2i=1\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}=1

So, the trigonometric form of eπ2i.e3π2i{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}} is 1.

Note: At the time of solving this type of question, we should remember some value of trigonometric functions like sin, cos, etc. at angles π2\dfrac{\pi }{2}, π\pi , 3π2\dfrac{3\pi }{2}, and 2π2\pi .
cosπ2=0\cos \dfrac{\pi }{2}=0; sinπ2=1\sin \dfrac{\pi }{2}=1
cosπ=1\cos \pi =-1; sinπ=0\sin \pi =0
cos3π2=0\cos \dfrac{3\pi }{2}=0; sin3π2=1\sin \dfrac{3\pi }{2}=-1
cos2π=1=cos0\cos 2\pi =1=\cos 0; sin2π=0=sin0\sin 2\pi =0=\sin 0
Remember the above formulas to solve this type of question easily.
We can solve this question using an alternate method.
Using the formula ea×eb=ea+b{{e}^{a}}\times {{e}^{b}}={{e}^{a+b}}, we can write eπ2i.e3π2i{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}} as
eπ2i.e3π2i=eπ2i+3π2i{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}={{e}^{\dfrac{\pi }{2}i+3\dfrac{\pi }{2}i}}
eπ2i.e3π2i=e(3+1)π2i=e4π2i\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}={{e}^{\dfrac{\left( 3+1 \right)\pi }{2}i}}={{e}^{\dfrac{4\pi }{2}i}}
eπ2i.e3π2i=e2πi\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}={{e}^{2\pi i}}
Now, using the formula eix=cosx+isinx{{e}^{ix}}=\cos x+i\sin x in the above equation, we can write
e2πi=cos2π+isin2π\Rightarrow {{e}^{2\pi i}}=\cos 2\pi +i\sin 2\pi
As we know that sin2π=0\sin 2\pi =0 and cos2π=1\cos 2\pi =1. So, the above equation can be written as
e2πi=1+i×0=1\Rightarrow {{e}^{2\pi i}}=1+i\times 0=1
Hence, we get the same value from this method too. So, one can use this method also.