Solveeit Logo

Question

Question: How do you multiply complex numbers in trigonometry?...

How do you multiply complex numbers in trigonometry?

Explanation

Solution

We first take two complex numbers with their principal arguments. We express them both in their exponential and trigonometric form. We also use the trigonometric formulas like (cosαcosβsinαsinβ)=cos(α+β);(sinαcosβ+cosαsinβ)=sin(α+β)\left( \cos \alpha \cos \beta -\sin \alpha \sin \beta \right)=\cos \left( \alpha +\beta \right);\left( \sin \alpha \cos \beta +\cos \alpha \sin \beta \right)=\sin \left( \alpha +\beta \right).

Complete step by step answer:
We have z1{{z}_{1}} and z2{{z}_{2}} as two complex numbers with α,β\alpha ,\beta as their principal arguments. We know that πα,βπ-\pi \le \alpha ,\beta \le \pi . This range is for the argument of any complex number. We can express any arbitrary complex number as z=eiθz={{e}^{i\theta }}. Here θ\theta is the argument.
We also can express it as z=eiθ=cosθ+isinθz={{e}^{i\theta }}=\cos \theta +i\sin \theta .
We denote z1=eiα{{z}_{1}}={{e}^{i\alpha }} and z2=eiβ{{z}_{2}}={{e}^{i\beta }}. We also know that arg(z1z2)=arg(z1)+arg(z2)\arg \left( {{z}_{1}}{{z}_{2}} \right)=\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right).

Now z1z2=eiα.eiα=ei(α+β){{z}_{1}}{{z}_{2}}={{e}^{i\alpha }}.{{e}^{i\alpha }}={{e}^{i\left( \alpha +\beta \right)}}. We now express it in trigonometry.
z1z2=(cosα+isinα)(cosβ+isinβ){{z}_{1}}{{z}_{2}}=\left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right).
We use formulas like

\Rightarrow \left( \sin \alpha \cos \beta +\cos \alpha \sin \beta \right)=\sin \left( \alpha +\beta \right) \\\ $$ Therefore, $$\left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\cos \alpha \cos \beta +i\cos \alpha \sin \beta +i\sin \alpha \cos \beta +{{i}^{2}}\sin \alpha \sin \beta \\\ \Rightarrow \left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\left( \cos \alpha \cos \beta +{{i}^{2}}\sin \alpha \sin \beta \right)+i\left( \cos \alpha \sin \beta +\sin \alpha \cos \beta \right) \\\ \Rightarrow \left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\left( \cos \alpha \cos \beta -\sin \alpha \sin \beta \right)+i\left( \cos \alpha \sin \beta +\sin \alpha \cos \beta \right) \\\ \therefore \left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\cos \left( \alpha +\beta \right)+i\sin \left( \alpha +\beta \right) $$ The multiplication for complex numbers in trigonometry works as the summation of the arguments. **Note:** Principal $\arg \left( {{z}_{1}}{{z}_{2}} \right)$ is given by $\alpha +\beta -2\pi $. The same thing can be done for condition of $\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right)<-\pi $ by adding $2\pi $ to the argument if it goes less than $-\pi $ to keep it in the range. The complex form can also be represented as $z={{e}^{i\theta }}=\cos \theta +i\sin \theta $.