Solveeit Logo

Question

Question: How do you make the graph for \(y=\ln \left( 1+\dfrac{x}{\ln \left( 1-x \right)} \right)\)?...

How do you make the graph for y=ln(1+xln(1x))y=\ln \left( 1+\dfrac{x}{\ln \left( 1-x \right)} \right)?

Explanation

Solution

We recall the domain and range of natural logarithmic function. We use restriction of domain on the natural logarithmic function to find restriction on the argument 1+xln(1x)1+\dfrac{x}{\ln \left( 1-x \right)}. We use these restrictions to plot a decreasing curve within interval x(0,1]x\in \left( 0,1 \right]with asymptotes as negative yy-axis.

Complete step by step answer:
We know that natural logarithmic function which has base ee only takes positive real values as inputs or arguments. It means
lnx:R+R\ln x:{{\mathsf{\mathbb{R}}}^{+}}\to \mathsf{\mathbb{R}}
We also know lnx\ln x returns positive value if x>1x > 1 which means lnx>0x>1\ln x > 0\Rightarrow x > 1. The function lnx\ln x returns negative if x(0,1)x\in \left( 0,1 \right) which meanslnx<0x(0,1)\ln x < 0\Rightarrow x\in \left( 0,1 \right). The zero for lnx\ln x is x=1x=1 which means lnx=0x=1\ln x=0\Rightarrow x=1 $$$$
We are asked to find the graph of following function
y=ln(1+xln(1x))y=\ln \left( 1+\dfrac{x}{\ln \left( 1-x \right)} \right)
We see that the logarithm inside the bracket ln(1x)\ln \left( 1-x \right) exists if 1x>0x<11-x > 0\Rightarrow x < 1. We also have

& 1+\dfrac{x}{\ln \left( 1-x \right)} > 0 \\\ & \Rightarrow t > 0\left( \text{where }1+\dfrac{x}{\ln \left( 1-x \right)}=t\text{ } \right) \\\ \end{aligned}$$ Now we get 3 possible cases. $$$$ Case-1:We first have the denominator $\ln \left( 1-x \right) > 0$ then we have $$\begin{aligned} & 1-x > 1 \\\ & \Rightarrow -x > 0 \\\ & \Rightarrow x < 0 \\\ \end{aligned}$$ We use the above result $x < 0$ and $\ln \left( 1-x \right) > 0$ to check that $1+\dfrac{x}{\ln \left( 1-x \right)} < 1$ . So we cannot have $\ln \left( t \right) > 0$ from case-1. $$$$ Case-2:We have $$\begin{aligned} & \ln \left( 1-x \right)=0 \\\ & \Rightarrow 1-x=1 \\\ & \Rightarrow x=0 \\\ \end{aligned}$$ We use L’hospital rule to on the argument of $t$ t have $$\begin{aligned} & \displaystyle \lim_{x \to 0}t=\displaystyle \lim_{x \to 0}\left( 1+\dfrac{x}{\ln \left( 1-x \right)} \right) \\\ & \Rightarrow \displaystyle \lim_{x \to 0}t=1+\displaystyle \lim_{x \to 0}\dfrac{x}{\ln \left( 1-x \right)} \\\ & \Rightarrow \displaystyle \lim_{x \to 0}t=1+\displaystyle \lim_{x \to 0}\dfrac{1}{\dfrac{1}{1-x}\left( -1 \right)} \\\ & \Rightarrow \displaystyle \lim_{x \to 0}t=1-1=0 \\\ \end{aligned}$$ So we argue that $t$ approaches to 0 as $x$ approaches to 0. $$$$ Case-3: We have $$\begin{aligned} & \ln \left( 1-x \right) > 0 \\\ & \Rightarrow 1-x > 1 \\\ & \Rightarrow -x > 0 \\\ & \Rightarrow x < 0 \\\ \end{aligned}$$ We use the above result $x < 0$ and previously obtained $\ln \left( 1-x \right) > 0$ to check that $1+\dfrac{x}{\ln \left( 1-x \right)} > 1\Rightarrow t > 1$ . So we cannot have $\ln \left( t \right) > 0$ from case-3. So our function is valid for $x\in \left( 0,1 \right)$ and as $x \to 1$ we have $y=\ln t\to 1$. We also have $x \to 0\Rightarrow y\to -\infty $.So our required graph is $$$$ ![](https://www.vedantu.com/question-sets/f3c9c171-bc64-4e02-99df-cef6351ac04e8572127611139162030.png) **Note:** We note that the given graph is the graph of a decreasing curve starting from $x=1$ and asymptotic about the negative $y-$ axis which means the curve meets the $y-$ axis at infinity. We note that if there two functions $f\left( x \right),g\left( x \right)$ such that $f\left( x \right)\to 0,g\left( x \right)\to 0$ as $x \to 0$ then we have the quotient $\dfrac{f\left( x \right)}{g\left( x \right)}$ in $\dfrac{0}{0}$ indeterminate from. We find the quotients in indeterminate from using L’hospital rule as $\displaystyle \lim_{x \to 0}\dfrac{f\left( x \right)}{g\left( x \right)}=\dfrac{{{f}^{'}}\left( x \right)}{{{g}^{'}}\left( x \right)}$. The other indeterminate form is $\dfrac{\infty }{\infty },{{1}^{\infty }},\infty -\infty $ etc.