Solveeit Logo

Question

Question: How do you list all the factorials up to 20?...

How do you list all the factorials up to 20?

Explanation

Solution

As we know that factorial is a function which is denoted by n!n! for any integer nn and is the product of all positive integers less than or equal to nn. So we will use the definition of factorial to find the factorial of the first 20 numbers.

Complete step by step answer:
We have to find the factorials up to 20.
Now, we know that factorial is the product of all positive integers less than or equal to the given number. Factorials are used in the permutations and combinations. Factorials are also used to solve the algebra and calculus, finding probability, used as the coefficients of terms of binomial theorem. Factorial is also used to find the number of way n objects can be arranged. A factorial for integer nn is denoted by n!n! and is defined by
n!=n×(n1)!......3×2×1n!=n\times \left( n-1 \right)!......3\times 2\times 1 for n>0n>0.
Now, we have to list all the factorials up to 20.
So let us start with 1 and go ahead we will get
1!=1 2!=2×1=2 \begin{aligned} & 1!=1 \\\ & 2!=2\times 1=2 \\\ \end{aligned}
3!=3×2×1=6 4!=4×3×2×1=24 5!=5×4×3×2×1=120 6!=6×5×4×3×2×1=720 7!=7×6×5×4×3×2×1=5040 8!=8×7×6×5×4×3×2×1=40320 9!=9×8×7×6×5×4×3×2×1=362880 10!=10×9×8×7×6×5×4×3×2×1=3628800 11!=11×10×9×8×7×6×5×4×3×2×1=39916800 12!=12×11×10×9×8×7×6×5×4×3×2×1=479001600 13!=13×12×11×10×9×8×7×6×5×4×3×2×1=6227020800 14!=14×13×12×11×10×9×8×7×6×5×4×3×2×1=87178291200 15!=15×14×13×12×11×10×9×8×7×6×5×4×3×2×1=1307674368000 16!=16×15×14×13×12×11×10×9×8×7×6×5×4×3×2×1=20922789888000 17!=17×16×15×14×13×12×11×10×9×8×7×6×5×4×3×2×1=355687428096000 18!=18×17×16×15×14×13×12×11×10×9×8×7×6×5×4×3×2×1=6402373705728000 19!=19×18×17×16×15×14×13×12×11×10×9×8×7×6×5×4×3×2×1=121645100408832000 20!=20×19×18×17×16×15×14×13×12×11×10×9×8×7×6×5×4×3×2×1=2432902008176640000 \begin{aligned} & 3!=3\times 2\times 1=6 \\\ & 4!=4\times 3\times 2\times 1=24 \\\ & 5!=5\times 4\times 3\times 2\times 1=120 \\\ & 6!=6\times 5\times 4\times 3\times 2\times 1=720 \\\ & 7!=7\times 6\times 5\times 4\times 3\times 2\times 1=5040 \\\ & 8!=8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=40320 \\\ & 9!=9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=362880 \\\ & 10!=10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=3628800 \\\ & 11!=11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=39916800 \\\ & 12!=12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=479001600 \\\ & 13!=13\times 12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=6227020800 \\\ & 14!=14\times 13\times 12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=87178291200 \\\ & 15!=15\times 14\times 13\times 12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=1307674368000 \\\ & 16!=16\times 15\times 14\times 13\times 12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=20922789888000 \\\ & 17!=17\times 16\times 15\times 14\times 13\times 12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=355687428096000 \\\ & 18!=18\times 17\times 16\times 15\times 14\times 13\times 12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=6402373705728000 \\\ & 19!=19\times 18\times 17\times 16\times 15\times 14\times 13\times 12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=121645100408832000 \\\ & 20!=20\times 19\times 18\times 17\times 16\times 15\times 14\times 13\times 12\times 11\times 10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=2432902008176640000 \\\ \end{aligned}
So above is the list of factorials upto 20.

Note: The points to be noted are that factorials are always integers. The value of 0!0! is always one. As the multiplication is quite lengthy so be careful and avoid calculation mistakes. It is not easy to remember the values of factorials so try to remember the concept and solve any factorial by using the concept step by step.