Solveeit Logo

Question

Question: How do you integrate \(x\times {{\tan }^{-1}}x\) ?...

How do you integrate x×tan1xx\times {{\tan }^{-1}}x ?

Explanation

Solution

Integrating x×tan1xx\times {{\tan }^{-1}}x meansx×tan1xdx\int{x\times {{\tan }^{-1}}xdx} ,
We use the following four formulae:
Integration by parts: \underset{{}}{\overset{{}}{\mathop \int }}\,uvdx~=~u\underset{{}}{\overset{{}}{\mathop \int }}\,vdx- \underset{{}}{\overset{{}}{\mathop \int }}\,\left(\dfrac{du}{dx}\underset{{}}{\overset{{}}{\mathop \int }}\,vdx \right)dx....(i)
dtan1xdx=1(x2+1)......(ii)\dfrac{d{{\tan }^{-1}}x}{dx}=\dfrac{1}{({{x}^{2}}+1)}......(ii)
xndx=xn+1n+1+C....(iii)\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C....(iii) , where C is a constant
1x2+1dx=tan1dx+C....(iv)\int{\dfrac{1}{{{x}^{2}}+1}dx={{\tan }^{-1}}dx+C}....(iv), where C is a constant
We first use (i) with u as tan1x{{\tan }^{-1}}x and v as x, then use (ii) to find dudx\dfrac{du}{dx} and then use (iii) and (iv) to do further integration.

Complete step by step answer:
We first use integration by parts, which is \underset{{}}{\overset{{}}{\mathop \int }}\,uvdx~=~u\underset{{}}{\overset{{}}{\mathop \int }}\,vdx-\left( \underset{{}}{\overset{{}}{\mathop \int }}\,\dfrac{du}{dx}\underset{{}}{\overset{{}}{\mathop \int }}\,vdx \right)dx....(i)
for which we need the formula of differentiation of tan1x{{\tan }^{-1}}x , which is dtan1xdx=1(x2+1)......(ii)\dfrac{d{{\tan }^{-1}}x}{dx}=\dfrac{1}{({{x}^{2}}+1)}......(ii)
So, applying (i) to x×tan1xdx\int{x\times {{\tan }^{-1}}x}dx ,we have
x×tan1xdx=tan1xxdx(dtan1xdx(xdx)dx)\Rightarrow \int{x\times {{\tan }^{-1}}xdx={{\tan }^{-1}}x\int{xdx-\int{\left( \dfrac{d{{\tan }^{-1}}x}{dx}\left( \int{xdx} \right)dx \right)}}}
Using xndx=xn+1n+1+C....(iii)\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+C....(iii) , where C is a constant, we have:
tan1xxdx(dtan1xdx(xdx)dx)=tan1x(x22)+C1dtan1xdx(x22)dx\Rightarrow {{\tan }^{-1}}x\int{xdx-\int{\left( \dfrac{d{{\tan }^{-1}}x}{dx}\left( \int{xdx} \right)dx \right)}}={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{d{{\tan }^{-1}}x}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)}dx , (Where C1{{C}_{1}} is a constant)
Now using (ii)
tan1x(x22)+C1dtan1xdx(x22)dx=tan1x(x22)+C11x2+1(x22)dx\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{d{{\tan }^{-1}}x}{dx}\left( \dfrac{{{x}^{2}}}{2} \right)}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{1}{{{x}^{2}}+1}\left( \dfrac{{{x}^{2}}}{2} \right)}dx
Since constant can be taken out of the integration without changing its value, we have:
tan1x(x22)+C11x2+1(x22)dx=tan1x(x22)+C112x2x2+1dx\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\int{\dfrac{1}{{{x}^{2}}+1}\left( \dfrac{{{x}^{2}}}{2} \right)}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{{{x}^{2}}+1}}dx
Now, since +1 -1 =0, we can add it to any term and fractions numerator. Thus,
tan1x(x22)+C112x2x2+1dx=tan1x(x22)+C112x2+11x2+1dx\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{{{x}^{2}}+1}}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}+1-1}{{{x}^{2}}+1}}dx
We, know numerator distributes over a denominator, so x2+11x2+1=x2+1x2+11x2+1\dfrac{{{x}^{2}}+1-1}{{{x}^{2}}+1}=\dfrac{{{x}^{2}}+1}{{{x}^{2}}+1}-\dfrac{1}{{{x}^{2}}+1}
Since x2{{x}^{2}} is positive for all x, x2+10{{x}^{2}}+1\ne 0 . Therefore x2+1x2+11x2+1=11x2+1\dfrac{{{x}^{2}}+1}{{{x}^{2}}+1}-\dfrac{1}{{{x}^{2}}+1}=1-\dfrac{1}{{{x}^{2}}+1} as x2+1{{x}^{2}}+1 gets cancelled.
Thus, tan1x(x22)+C112x2x2+1dx=tan1x(x22)+C11211x2+1dx\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{\dfrac{{{x}^{2}}}{{{x}^{2}}+1}}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{1-\dfrac{1}{{{x}^{2}}+1}}dx
Integration distributes over addition that is, for any functions f and gf\text{ and }g we have (f+g)=(f)+(g)\left( \int{f+g} \right)=(\int{f)+\left( \int{g} \right)}
So, tan1x(x22)+C11211x2+1dx=tan1x(x22)+C112(1dx1x2+1dx)\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\int{1-\dfrac{1}{{{x}^{2}}+1}}dx={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( \int{1dx-\int{\dfrac{1}{{{x}^{2}}+1}}}dx \right)
Using (iii) again we have:
(Where C2{{C}_{2}} is a constant)
tan1x(x22)+C112(1dx1x2+1dx)=tan1x(x22)+C112(x+C21x2+1dx)\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( \int{1dx-\int{\dfrac{1}{{{x}^{2}}+1}}}dx \right)={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( x+{{C}_{2}}-\int{\dfrac{1}{{{x}^{2}}+1}dx} \right)
Now, using 1x2+1dx=tan1dx+C....(iv)\int{\dfrac{1}{{{x}^{2}}+1}dx={{\tan }^{-1}}dx+C}....(iv) , where C is a constant, we have:
(where C3{{C}_{3}} is a constant)
tan1x(x22)+C112(x+C21x2+1dx)=tan1x(x22)+C112(x+C2tan1x+C3)\Rightarrow {{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( x+{{C}_{2}}-\int{\dfrac{1}{{{x}^{2}}+1}dx} \right)={{\tan }^{-1}}x\left( \dfrac{{{x}^{2}}}{2} \right)+{{C}_{1}}-\dfrac{1}{2}\left( x+{{C}_{2}}-{{\tan }^{-1}}x+{{C}_{3}} \right)
Since C1,C2,C3{{C}_{1}},{{C}_{2}},{{C}_{3}} are all constants, they can be clubbed together as one constant and we write it as + C

Therefore, x×tan1xdx=tan1x((x22)+12)12x+C\int{x\times {{\tan }^{-1}}xdx}={{\tan }^{-1}}x\left( \left( \dfrac{{{x}^{2}}}{2} \right)+\dfrac{1}{2} \right)-\dfrac{1}{2}x+C

Note: Be careful with putting constants after doing integrals, it is advised to just add a C as constant after all the calculation instead of writing C1,C2{{C}_{1}},{{C}_{2}} etc, have written above for your understanding. That is a common place to make mistakes. Other than that, one must be extremely careful while applying the formulae as it's common to miss a term or two.
Alternatively,
You can substitute
x=tanθ dx=sec2θdθ xtan1xdx=θtanθsec2θdθ=θsinθcos3θdθ \begin{aligned} & x=\tan \theta \\\ & dx={{\sec }^{2}}\theta d\theta \\\ & \int{x{{\tan }^{-1}}xdx=\int{\theta \tan \theta {{\sec }^{2}}\theta d\theta =\int{\dfrac{\theta \sin \theta }{{{\cos }^{3}}\theta }}}}d\theta \\\ \end{aligned}
And then use integration by parts.