Solveeit Logo

Question

Question: How do you integrate \[{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)\]?...

How do you integrate t12ln(t){{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)?

Explanation

Solution

This type of question is based on the concept of integration by parts. Since the given function can be divided into two parts, we have to use integration by parts with respect to t, that is udv=uvvdu\int{udv=uv-\int{vdu}}. Here, we find that u= ln(t) and dv=t12dtdv={{t}^{\dfrac{1}{2}}}dt. Integrate dv to find v and differentiate u to find du, with respect to t. then substitute in the formula of integration by parts. Using the power rule of integration that is xndx=xn+1n+1\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}, solve the indefinite integration.

Complete step by step solution:
According to the question, we are asked to find the integral of t12ln(t){{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right).
We have been given the function is t12ln(t){{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right). --------(1)
We find that the given function is with respect to t.
That is, we have to find t12ln(t)dt\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}.
To integrate function (1), we have to use integration by parts.
We know that the formula for integration by parts is udv=uvvdu\int{udv=uv-\int{vdu}}.
Here, let us consider u=ln(t) and dv=t12dtdv={{t}^{\dfrac{1}{2}}}dt.
We have to integrate dv with respect to t to find the value of v.
dv=(t12)dt\Rightarrow \int{dv}=\int{\left( {{t}^{\dfrac{1}{2}}} \right)}dt
Using the power rule of integration that is xndx=xn+1n+1\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}, we get
dv=t12+112+1\int{dv}=\dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}
We know that dv=v\int{dv=v}. Therefore, we get
v=t12+112+1v=\dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}
On taking LCM in the power of the numerator and term in the denominator, we get
v=t1+221+22v=\dfrac{{{t}^{\dfrac{1+2}{2}}}}{\dfrac{1+2}{2}}
v=t3232\Rightarrow v=\dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}
Using the rule abcd=ab×dc\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}\times \dfrac{d}{c}, we get
v=2t323v=\dfrac{2{{t}^{\dfrac{3}{2}}}}{3}
Now, consider u=ln(t).
Differentiate u with respect to t.
dudt=ddt(ln(t))\dfrac{du}{dt}=\dfrac{d}{dt}\left( \ln \left( t \right) \right)
We know that ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x}. Using this rule of integration, we get
dudt=1t\dfrac{du}{dt}=\dfrac{1}{t}
Now, take the dt from the denominator of the LHS to the RHS, we get
du=1tdt\Rightarrow du=\dfrac{1}{t}dt.
Now, substitute the value of u, v, du and dv in the integration by parts formula, that is udv=uvvdu\int{udv=uv-\int{vdu}}.
t12ln(t)dt=ln(t)×2t3232t323×1tdt+c\Rightarrow \int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\ln \left( t \right)\times \dfrac{2{{t}^{\dfrac{3}{2}}}}{3}-\int{\dfrac{2{{t}^{\dfrac{3}{2}}}}{3}\times \dfrac{1}{t}dt}+c
t12ln(t)dt=23ln(t)t322t323×1tdt+c\Rightarrow \int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}\ln \left( t \right){{t}^{\dfrac{3}{2}}}-\int{\dfrac{2{{t}^{\dfrac{3}{2}}}}{3}\times \dfrac{1}{t}dt}+c
Taking the constants out of the integration, we get
t12ln(t)dt=23ln(t)t3223t32×1tdt+c\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}\ln \left( t \right){{t}^{\dfrac{3}{2}}}-\dfrac{2}{3}\int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}+c -------------(2)
Let us now consider t32×1tdt\int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}.
We know that 1x=x1\dfrac{1}{x}={{x}^{-1}}. Using this rule in the integration, we get
t32×1tdt=t32×t1dt\Rightarrow \int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\int{{{t}^{\dfrac{3}{2}}}\times {{t}^{-1}}dt}
Using the property of powers, that is am×an=am+n{{a}^{m}}\times {{a}^{n}}={{a}^{m+n}}, we get
t32×1tdt=t321dt\int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\int{{{t}^{\dfrac{3}{2}-1}}dt}
Now, we need to take the LCM in the power.
t32×1tdt=t322dt\Rightarrow \int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\int{{{t}^{\dfrac{3-2}{2}}}dt}
t32×1tdt=t12dt\Rightarrow \int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\int{{{t}^{\dfrac{1}{2}}}dt}
Using the power rule of integration that is xndx=xn+1n+1\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}, we get
t32×1tdt=t12+112+1\int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}
On taking LCM, we get
t32×1tdt=t1+221+22\int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\dfrac{{{t}^{\dfrac{1+2}{2}}}}{\dfrac{1+2}{2}}
t32×1tdt=t3232\Rightarrow \int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}
Using the rule abcd=ab×dc\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}\times \dfrac{d}{c}, we get
t32×1tdt=2t323\Rightarrow \int{{{t}^{\dfrac{3}{2}}}\times \dfrac{1}{t}dt}=\dfrac{2{{t}^{\dfrac{3}{2}}}}{3}
Substitute the value in equation (2).
t12ln(t)dt=23ln(t)t3223×2t323+c\Rightarrow \int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}\ln \left( t \right){{t}^{\dfrac{3}{2}}}-\dfrac{2}{3}\times \dfrac{2{{t}^{\dfrac{3}{2}}}}{3}+c
Let us now take 23\dfrac{2}{3} from the RHS. We get
t12ln(t)dt=23[ln(t)t322t323]+c\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}\left[ \ln \left( t \right){{t}^{\dfrac{3}{2}}}-\dfrac{2{{t}^{\dfrac{3}{2}}}}{3} \right]+c.
We can also take t32{{t}^{\dfrac{3}{2}}} common from the RHS. We get
t12ln(t)dt=23t32[ln(t)23]+c\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}{{t}^{\dfrac{3}{2}}}\left[ \ln \left( t \right)-\dfrac{2}{3} \right]+c
Therefore, the integration of t12ln(t){{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right) is 23t32[ln(t)23]+c\dfrac{2}{3}{{t}^{\dfrac{3}{2}}}\left[ \ln \left( t \right)-\dfrac{2}{3} \right]+c.

Note: We can further simplify the final answer obtained.
Take 3 as the LCM in the terms inside the bracket.
t12ln(t)dt=23t32[3ln(t)23]+c\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3}{{t}^{\dfrac{3}{2}}}\left[ \dfrac{3\ln \left( t \right)-2}{3} \right]+c
Now, take 3 outside the bracket from the denominator.
t12ln(t)dt=23×3t32[3ln(t)2]+c\Rightarrow \int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{3\times 3}{{t}^{\dfrac{3}{2}}}\left[ 3\ln \left( t \right)-2 \right]+c
On further simplifications, we get
t12ln(t)dt=29t32[3ln(t)2]+c\int{{{t}^{\dfrac{1}{2}}}\cdot \ln \left( t \right)dt}=\dfrac{2}{9}{{t}^{\dfrac{3}{2}}}\left[ 3\ln \left( t \right)-2 \right]+c.