Solveeit Logo

Question

Question: How do you integrate \(\sqrt {1 - {{\tan }^2}x} \) with respect to \[x\] ?...

How do you integrate 1tan2x\sqrt {1 - {{\tan }^2}x} with respect to xx ?

Explanation

Solution

In this question we have to find the integral of the given function, first multiply and divide with sec2x{\sec ^2}x then assume the tanx\tan x as sinθ\sin \theta , and then simplify the expression by using partial fractions, then we will get an expression that is easy to be integrated, so apply integration formula we will get the required value for the given expression.

Complete step by step answer:
Given 1tan2x\sqrt {1 - {{\tan }^2}x} and we have to integrate with respect to xx ,
Let,
I=1tan2xI = \int {\sqrt {1 - {{\tan }^2}x} } ,
Multiply and divide with sec2x{\sec ^2}x , we get,
I=1tan2x×sec2xsec2xdx\Rightarrow I = \int {\sqrt {1 - {{\tan }^2}x} } \times \dfrac{{{{\sec }^2}x}}{{{{\sec }^2}x}}dx ,
Now we know that, sec2x=1+tan2x{\sec ^2}x = 1 + {\tan ^2}x now substitute the value in the expression we get,
I=1tan2x1+tan2x(sec2x)dx\Rightarrow I = \int {\dfrac{{\sqrt {1 - {{\tan }^2}x} }}{{1 + {{\tan }^2}x}}} \left( {{{\sec }^2}x} \right)dx ,
Let us consider sinθ=tanx\sin \theta = \tan x ,
Now perform differentiate on both sides, we get,
ddθsinθ=ddxtanx\Rightarrow \dfrac{d}{{d\theta }}\sin \theta = \dfrac{d}{{dx}}\tan x ,
Now deriving we get,
cosθdθ=sec2xdx\Rightarrow \cos \theta d\theta = {\sec ^2}xdx ,
Now the given expression becomes,
I=1sin2θ1+sin2θcosθdθ\Rightarrow I = \int {\dfrac{{\sqrt {1 - {{\sin }^2}\theta } }}{{1 + {{\sin }^2}\theta }}} \cos \theta d\theta ,
We know that 1sin2θ=cos2θ1 - {\sin ^2}\theta = {\cos ^2}\theta , then the expression becomes,
I=cos2θ1+sin2θcosθdθ\Rightarrow I = \int {\dfrac{{\sqrt {{{\cos }^2}\theta } }}{{1 + {{\sin }^2}\theta }}} \cos \theta d\theta ,
Now simplifying we get,
I=cosθ1+sin2θcosθdθ\Rightarrow I = \int {\dfrac{{\cos \theta }}{{1 + {{\sin }^2}\theta }}} \cos \theta d\theta ,
Now multiplying we get,
I=cos2θ1+sin2θdθ\Rightarrow I = \int {\dfrac{{{{\cos }^2}\theta }}{{1 + {{\sin }^2}\theta }}} d\theta ,
Now writing in terms of tanθ\tan \theta and secθ\sec \theta , we get,
I=1sec2θ1+tan2θsec2θdθ\Rightarrow I = \int {\dfrac{{\dfrac{1}{{{{\sec }^2}\theta }}}}{{1 + \dfrac{{{{\tan }^2}\theta }}{{{{\sec }^2}\theta }}}}} d\theta ,
Now simplifying we get,
I=1sec2θ+tan2θdθ\Rightarrow I = \int {\dfrac{1}{{{{\sec }^2}\theta + {{\tan }^2}\theta }}} d\theta ,
Now we know that 1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta , we get,
I=11+tan2θ+tan2θdθ\Rightarrow I = \int {\dfrac{1}{{1 + {{\tan }^2}\theta + {{\tan }^2}\theta }}} d\theta ,
Now simplifying we get,
I=11+2tan2θdθ\Rightarrow I = \int {\dfrac{1}{{1 + 2{{\tan }^2}\theta }}} d\theta ,
Now multiply and divide by sec2θ{\sec ^2}\theta , we get,
I=11+2tan2θ×sec2θsec2θdθ\Rightarrow I = \int {\dfrac{1}{{1 + 2{{\tan }^2}\theta }}} \times \dfrac{{{{\sec }^2}\theta }}{{{{\sec }^2}\theta }}d\theta ,
Now using the identity 1+tan2θ=sec2θ1 + {\tan ^2}\theta = {\sec ^2}\theta , we get,
I=11+2tan2θ×sec2θ1+tan2θdθ\Rightarrow I = \int {\dfrac{1}{{1 + 2{{\tan }^2}\theta }}} \times \dfrac{{{{\sec }^2}\theta }}{{1 + {{\tan }^2}\theta }}d\theta ,
Now simplifying we get,
I=sec2θ(1+tan2θ)(1+2tan2θ)dθ\Rightarrow I = \int {\dfrac{{{{\sec }^2}\theta }}{{\left( {1 + {{\tan }^2}\theta } \right)\left( {1 + 2{{\tan }^2}\theta } \right)}}} d\theta ,
Let us consider u=tanθu = \tan \theta ,
Now deriving on both sides we get,
du=sec2θdθ\Rightarrow du = {\sec ^2}\theta d\theta ,
Now the expression becomes,
I=1(1+u2)(1+2u2)du\Rightarrow I = \int {\dfrac{1}{{\left( {1 + {u^2}} \right)\left( {1 + 2{u^2}} \right)}}} du ,
Now using performing partial fractions, we get, rewrite the expression we get,
A1+u2+B1+2u2=1(1+u2)(1+2u2)\Rightarrow \dfrac{A}{{1 + {u^2}}} + \dfrac{B}{{1 + 2{u^2}}} = \dfrac{1}{{\left( {1 + {u^2}} \right)\left( {1 + 2{u^2}} \right)}} ,
Now taking L.C.M and simplifying we get,
A+2Au2+B+Bu2(1+u2)(1+2u2)=1(1+u2)(1+2u2)\Rightarrow \dfrac{{A + 2A{u^2} + B + B{u^2}}}{{\left( {1 + {u^2}} \right)\left( {1 + 2{u^2}} \right)}} = \dfrac{1}{{\left( {1 + {u^2}} \right)\left( {1 + 2{u^2}} \right)}} ,
Now simplifying we get,
u2(2A+B)+(A+B)(1+u2)(1+2u2)=1(1+u2)(1+2u2)\Rightarrow \dfrac{{{u^2}\left( {2A + B} \right) + \left( {A + B} \right)}}{{\left( {1 + {u^2}} \right)\left( {1 + 2{u^2}} \right)}} = \dfrac{1}{{\left( {1 + {u^2}} \right)\left( {1 + 2{u^2}} \right)}} ,
Now comparing the two sides we get,
2A+B=0(1)2A + B = 0 - - - - (1) and
A+B=1(2)A + B = 1 - - - - (2) ,
Now solving the two equations we get,
A=1\Rightarrow A = - 1 and B=2B = 2 ,
Now substitute the values in the expression we get,
I=21+2u211+u2du\Rightarrow I = \int {\dfrac{2}{{1 + 2{u^2}}} - \dfrac{1}{{1 + {u^2}}}} du ,
Now separating the terms we get,
I=21+2u2du11+u2du\Rightarrow I = \int {\dfrac{2}{{1 + 2{u^2}}}du - \int {\dfrac{1}{{1 + {u^2}}}} } du ,
Now we can say that the above terms are in form of tan1{\tan ^{ - 1}} integrals,
I=221+2u2du11+u2du\Rightarrow I = \sqrt 2 \int {\dfrac{{\sqrt 2 }}{{1 + \sqrt 2 {u^2}}}du - \int {\dfrac{1}{{1 + {u^2}}}} } du ,
So, from the integral formula we get,
I=2tan1(2u)tan1u\Rightarrow I = \sqrt 2 {\tan ^{ - 1}}\left( {\sqrt 2 u} \right) - {\tan ^{ - 1}}u ,
Now we know that u=tanθu = \tan \theta , substitute the value in the expression we get,
I=2tan1(2tanθ)tan1(tanθ)\Rightarrow I = \sqrt 2 {\tan ^{ - 1}}\left( {\sqrt 2 \tan \theta } \right) - {\tan ^{ - 1}}\left( {\tan \theta } \right) ,
Now simplifying we get,
I=2tan1(2tanθ)θ\Rightarrow I = \sqrt 2 {\tan ^{ - 1}}\left( {\sqrt 2 \tan \theta } \right) - \theta ,
Now we know that sinθ=tanx\sin \theta = \tan x ,
Now apply sin1{\sin ^{ - 1}} on both sides we get,
sin1(sinθ)=sin1(tanx)\Rightarrow {\sin ^{ - 1}}\left( {\sin \theta } \right) = {\sin ^{ - 1}}\left( {\tan x} \right) ,
Now simplifying we get,
θ=sin1(tanx)\Rightarrow \theta = {\sin ^{ - 1}}\left( {\tan x} \right) ,
And we know that tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} , and cosθ=1sin2θ\cos \theta = \sqrt {1 - {{\sin }^2}\theta } , so we get,
\Rightarrow tanθ=sinθ1sin2θ\tan \theta = \dfrac{{\sin \theta }}{{\sqrt {1 - {{\sin }^2}\theta } }} ,
Now we know that sinθ=tanx\sin \theta = \tan x , by substituting we get,
tanθ=tanx1tan2x\Rightarrow \tan \theta = \dfrac{{\tan x}}{{\sqrt {1 - {{\tan }^2}x} }} ,
Now the expression becomes,
I=2tan1(2tanx1tan2x)sin1(tanx)+C\Rightarrow I = \sqrt 2 {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 \tan x}}{{\sqrt {1 - {{\tan }^2}x} }}} \right) - {\sin ^{ - 1}}\left( {\tan x} \right) + C ,
Now substituting the value of I we get,
1tan2xdx=2tan1(2tanx1tan2x)sin1(tanx)+C\Rightarrow \int {\sqrt {1 - {{\tan }^2}x} dx} = \sqrt 2 {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 \tan x}}{{\sqrt {1 - {{\tan }^2}x} }}} \right) - {\sin ^{ - 1}}\left( {\tan x} \right) + C ,
So, the value of the given expression is,
2tan1(2tanx1tan2x)sin1(tanx)+C\sqrt 2 {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 \tan x}}{{\sqrt {1 - {{\tan }^2}x} }}} \right) - {\sin ^{ - 1}}\left( {\tan x} \right) + C ,

Final Answer:
\therefore The value of the given expression 1tan2xdx\int {\sqrt {1 - {{\tan }^2}x} dx} is equal to 2tan1(2tanx1tan2x)sin1(tanx)+C\sqrt 2 {\tan ^{ - 1}}\left( {\dfrac{{\sqrt 2 \tan x}}{{\sqrt {1 - {{\tan }^2}x} }}} \right) - {\sin ^{ - 1}}\left( {\tan x} \right) + C .

Note: In this type of question we use both derivation and integration formulas as both are related to each other students should not get confused where to use the formulas and which one to use as there are many formulas in both derivation and integration. Some of the important formulas that are used are given below:
ddxx=1\dfrac{d}{{dx}}x = 1 ,
ddxxn=nxn1\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}} ,
ddxuv=udvdx+vdudx\dfrac{d}{{dx}}uv = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}} ,
ddxex=ex\dfrac{d}{{dx}}{e^x} = {e^x} ,
ddxuv=vdudxudvdxv2\dfrac{d}{{dx}}\dfrac{u}{v} = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}} ,
ddxlnx=1x\dfrac{d}{{dx}}\ln x = \dfrac{1}{x} ,
ddxsinx=cosx\dfrac{d}{{dx}}\sin x = \cos x ,
ddxcosx=sinx\dfrac{d}{{dx}}\cos x = - \sin x ,
ddxtanx=sec2x\dfrac{d}{{dx}}\tan x = {\sec ^2}x ,
dx=x+c\int {dx = x + c} ,
xndx=xn+1n+1+c\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c ,
1xdx=lnx+c\int {\dfrac{1}{x}dx} = \ln x + c ,
11+x2dx=tan1x\int {\dfrac{1}{{1 + {x^2}}}dx = {{\tan }^{ - 1}}x} .