Solveeit Logo

Question

Question: How do you integrate \(\smallint \tan 3x + \sec 3xdx\) ?...

How do you integrate tan3x+sec3xdx\smallint \tan 3x + \sec 3xdx ?

Explanation

Solution

To solve this integral expression, first we should know that this integral can be solved by the u-substitution method. And then we can solve this question in two parts to make the steps to solve easier.

Complete step-by-step solution:
The given integral can be solved by using a u-substitution, i.e..
tanudu=lncosu+C\smallint \tan \,udu = - \ln |\cos u| + C and
secudu=lnsecu+tanu+C\smallint \sec \,udu = \ln |\sec u + \tan u| + C
Now, back to the given expression- tan3x+sec3xdx\smallint \tan 3x + \sec 3xdx :
We can let, u=3xu = 3x
Differentiate the above assumed u=3xu = 3x :
du=3dx 13du=dx  \Rightarrow du = 3dx \\\ \Rightarrow \dfrac{1}{3}du = dx \\\
Now, substitute the upper values in the main given integral expression:
tan3x+sec3xdx=13tanudu+13secudu 13lncos3x+13sec3x+tan3x+C 13sec3x+tan3x13lncos3x+C  \therefore \smallint \tan 3x + \sec 3xdx = \dfrac{1}{3}\smallint \tan udu + \dfrac{1}{3}\smallint \sec udu \\\ \Rightarrow - \dfrac{1}{3}\ln |\cos 3x| + \dfrac{1}{3}|\sec 3x + \tan 3x| + C \\\ \Rightarrow \dfrac{1}{3}|\sec 3x + \tan 3x| - \dfrac{1}{3}\ln |\cos 3x| + C \\\

Note: In calculus, as we use the u-substitution method in this question, that is the convenient method to solve the complex integration by assuming one of them part as uu . When deciding which part of our function to call uu , we will want to look for a piece of your function that you can see that piece’s derivative somewhere else in the function.