Solveeit Logo

Question

Question: How do you integrate \( \smallint (\dfrac{{{x^2}}}{{\sqrt {4 - {x^2}} }})dx \) ?...

How do you integrate (x24x2)dx\smallint (\dfrac{{{x^2}}}{{\sqrt {4 - {x^2}} }})dx ?

Explanation

Solution

Hint : To solve this question, first we will assume any of the set of variables or constant be another variable to get the expression easier. And conclude until the non-operational state is not achieved. And finally substitute the assumed value.

Complete step-by-step answer :
I=x24x2dxI = \smallint \dfrac{{{x^2}}}{{\sqrt {4 - {x^2}} }}dx
Let x=2sin(θ)x = 2\sin (\theta )
Now, differentiate the upper assumed equation:
dx=2cos(θ)dθdx = 2\cos (\theta )d\theta
So:
Now, put the value of xx and dxdx :
I=4sin(θ)244sin(θ)2.2cos(θ)dθ =22sin(θ)2cos(θ)1sin(θ)2dθ   I = \smallint \dfrac{{4\sin {{(\theta )}^2}}}{{\sqrt {4 - 4\sin {{(\theta )}^2}} }}.2\cos (\theta )d\theta \\\ = 2\smallint \dfrac{{2\sin {{(\theta )}^2}\cos (\theta )}}{{\sqrt {1 - \sin {{(\theta )}^2}} }}d\theta \;
As we know, 1sin(θ)2=cos(θ)21 - \sin {(\theta )^2} = \cos {(\theta )^2} ,
I=22sin(θ)2dθI = 2\smallint 2\sin {(\theta )^2}d\theta
[2sin(θ)2=1cos(2θ)][\because 2\sin {(\theta )^2} = 1 - \cos (2\theta )]
I=2(1cos(2θ))dθ =2θsin(2θ) =2(θsin(θ)cos(θ))   I = 2\smallint (1 - \cos (2\theta ))d\theta \\\ = 2\theta - \sin (2\theta ) \\\ = 2(\theta - \sin (\theta )\cos (\theta )) \;
Finally, if x=2sin(θ)x = 2\sin (\theta ) , as we assumed in beginning, then θ=sin1(x2)\theta = {\sin ^{ - 1}}(\dfrac{x}{2}) and cos(sin1(x))=1x2\cos ({\sin ^{ - 1}}(x)) = \sqrt {1 - {x^2}}
I=2sin1(x2)x1x24 =2sin1(x2)x24x2+C   \therefore I = 2{\sin ^{ - 1}}(\dfrac{x}{2}) - x\sqrt {1 - \dfrac{{{x^2}}}{4}} \\\ = 2{\sin ^{ - 1}}(\dfrac{x}{2}) - \dfrac{x}{2}\sqrt {4 - {x^2}} + C \;
here, CRC \in R .
Hence, the integration of (x24x2)dx\smallint (\dfrac{{{x^2}}}{{\sqrt {4 - {x^2}} }})dx is 2sin1(x2)x24x2+C2{\sin ^{ - 1}}(\dfrac{x}{2}) - \dfrac{x}{2}\sqrt {4 - {x^2}} + C .
So, the correct answer is “ (x24x2)dx\smallint (\dfrac{{{x^2}}}{{\sqrt {4 - {x^2}} }})dx is 2sin1(x2)x24x2+C2{\sin ^{ - 1}}(\dfrac{x}{2}) - \dfrac{x}{2}\sqrt {4 - {x^2}} + C ”.

Note : Usually the method of integration by substitution is extremely useful when we make a substitution for a function whose derivative is also present in the integrand. Doing so, the function simplifies and then the basic formulas of integration can be used to integrate the function.