Solveeit Logo

Question

Question: How do you integrate \({\left( {\tan x} \right)^4}\)?...

How do you integrate (tanx)4{\left( {\tan x} \right)^4}?

Explanation

Solution

In order to evaluate the integral of the given function, first of all, we will reduce it to the standard form by a proper substitution. After completing the substitution part, we will integrate the functions using the standard formulas of integrals mentioned below.

Formula used:
\Rightarrow xndx=xn+1n+1+C,n1\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,n \ne - 1
\Rightarrow sec2xdx=tanx+C\int {{{\sec }^2}xdx = \tan x + C}

Complete step-by-step answer:
First of all, let us take
\Rightarrow I=tan4xdxI = \int {{{\tan }^4}xdx}
Now, we will be substituting tan4x=tan2xtan2x{\tan ^4}x = {\tan ^2}x{\tan ^2}x , then the integral becomes
\Rightarrow =tan2x.tan2xdx= \int {{{\tan }^2}x.{{\tan }^2}xdx}
Again, we will be using the trigonometric identity, which is tan2x=sec2x1{\tan ^2}x = {\sec ^2}x - 1 ,
Using the trigonometric identity, the integral becomes
\Rightarrow =tan2x(sec2x1)dx= \int {{{\tan }^2}x\left( {{{\sec }^2}x - 1} \right)dx}
Simplifying the brackets inside the integral, we get
\Rightarrow =(tan2xsec2xtan2x)dx = \int {\left( {{{\tan }^2}x{{\sec }^2}x - {{\tan }^2}x} \right)} dx
Now, we separate the two integrals, in order to solve them separately, then the integrals are
\Rightarrow =tan2xsec2xdxtan2xdx= \int {{{\tan }^2}x{{\sec }^2}xdx - \int {{{\tan }^2}xdx} }
\Rightarrow =(tanx)2sec2xdx(sec2x1)dx= \int {{{\left( {\tan x} \right)}^2}{{\sec }^2}x} dx - \int {({{\sec }^2}x - 1)dx}
Now, we consider the first integral as I1{I_1} in order to solve this by substitution method,
\Rightarrow =I1sec2xdx+dx= {I_1} - \int {{{\sec }^2}xdx} + \int {dx} - - - - - - - - - - - (1.)(1.)
Now,
\Rightarrow I1=(tanx)2sec2xdx{I_1} = \int {{{\left( {\tan x} \right)}^2}{{\sec }^2}xdx} ,
We write it like this because it will be easier to solve and use the substitution method. Also, we know that the differentiation of tanx\tan x is the rest of the function. This way the substitution methods are used.
Let us take u=tanxu = \tan x
We differentiate on both sides, then it becomes
\Rightarrow dudx=sec2x\dfrac{{du}}{{dx}} = {\sec ^2}x
du=sec2xdx\Rightarrow du = {\sec ^2}xdx
Now we substitute these values in the integral I1{I_1} , then this becomes as
\Rightarrow I1=u2du{I_1} = \int {{u^2}du}
We solve this integral by using the formula, mentioned above.
\Rightarrow =u2+12+1+C1 = \dfrac{{{u^{2 + 1}}}}{{2 + 1}} + {C_1}
\Rightarrow =u33+C1 = \dfrac{{{u^3}}}{3} + {C_1} .
Now by substituting u=tanxu = \tan x , the value of I1{I_1}becomes as
\Rightarrow I1=tan3x3+C1{I_1} = \dfrac{{{{\tan }^3}x}}{3} + {C_1}
Now, we put the value of I1{I_1} in (1.)(1.),
\Rightarrow I=tan3x3+C1sec2xdx+dxI = \dfrac{{{{\tan }^3}x}}{3} + {C_1} - \int {{{\sec }^2}xdx} + \int {dx}
Here again, we will be using the formula of integrals mentioned above, we get
\Rightarrow =tan3x3tanx+x+C = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x + C ,
where CC is all constants including C1{C_1}

I=tan3x3tanx+x+CI = \dfrac{{{{\tan }^3}x}}{3} - \tan x + x + C

Note:
The integral I1{I_1} should be simplified separately, in order to use the substitution method properly. After obtaining the value of I1{I_1}, substitute it back in II and evaluate the final solution of II. Here, CC is an arbitrary constant known as the constant of integration.