Solveeit Logo

Question

Question: How do you integrate \[\left\\{ {\dfrac{x}{{\sqrt {4 + 4{x^2}} }}} \right\\}dx\] from 0 to 2?...

How do you integrate \left\\{ {\dfrac{x}{{\sqrt {4 + 4{x^2}} }}} \right\\}dx from 0 to 2?

Explanation

Solution

Here in this question given a definite integral, we have to find the integrated value of given function. This can be solved by substitution method means substitute denominator as t and later integrated by using the general power formula of integration. And further simplify by substituting the limit points we get the required solution.

Complete step by step solution:
Definite integral as integral expressed as the difference between the values of the integral at specified upper and lower limits of the independent variable.
Consider the given integral
\left\\{ {\dfrac{x}{{\sqrt {4 + 4{x^2}} }}} \right\\}dx--------(1)
The given limit point is [0,2].
Integrate equation (1) with respect to xx with limit point [0,2], then
02x4+4x2dx\Rightarrow \,\,\,\,\int_0^2 {\dfrac{x}{{\sqrt {4 + 4{x^2}} }}} \,dx------(2)
This can be solve by using the general power formula of integration
i.e., xn=xn+1n+1+C\int {{x^n}} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C, (n1)\left( {n \ne - 1} \right)
Put the denominator of equation 2 as t
i.e., 4+4x2=t4 + 4{x^2} = t
differentiate with respect to x, then
0+4.2xdx=dt0 + 4.2x\,dx = dt
8xdx=dt8x\,dx = dt
Divide both side by 8
xdx=dt8x\,dx = \dfrac{{dt}}{8}
Substitute this in equation (2), then
02dt8t\Rightarrow \,\,\,\,\int_0^2 {\dfrac{{\dfrac{{dt}}{8}}}{{\sqrt t }}} \,
1802dtt\Rightarrow \,\,\,\,\dfrac{1}{8}\int_0^2 {\dfrac{{dt}}{{\sqrt t }}} \,
t\sqrt t can be written as t12{t^{\dfrac{1}{2}}}, then
1802dtt12\Rightarrow \,\,\,\,\dfrac{1}{8}\int_0^2 {\dfrac{{dt}}{{{t^{\dfrac{1}{2}}}}}} \,
Take denominator to the numerator
1802t12dt\Rightarrow \,\,\,\,\dfrac{1}{8}\int_0^2 {{t^{ - \dfrac{1}{2}}}} \,dt
Using the general power formula of integration then
18[t12+112+1]02\Rightarrow \,\,\,\,\dfrac{1}{8}\left[ {\dfrac{{{t^{ - \dfrac{1}{2} + 1}}}}{{ - \dfrac{1}{2} + 1}}} \right]_0^2
On simplification, we get
18[t1212]02\Rightarrow \,\,\,\,\dfrac{1}{8}\left[ {\dfrac{{{t^{\dfrac{1}{2}}}}}{{\dfrac{1}{2}}}} \right]_0^2
18[2t12]02\Rightarrow \,\,\,\,\dfrac{1}{8}\left[ {2{t^{\dfrac{1}{2}}}} \right]_0^2
Or it can be written as
18[2t]02\Rightarrow \,\,\,\,\dfrac{1}{8}\left[ {2\sqrt t } \right]_0^2
Where t=4+4x2t = 4 + 4{x^2}, then
18[24+4x2]02\Rightarrow \,\,\,\,\dfrac{1}{8}\left[ {2\sqrt {4 + 4{x^2}} } \right]_0^2
Take 4 as common inside the square root
18[24(1+x2)]02\Rightarrow \,\,\,\,\dfrac{1}{8}\left[ {2\sqrt {4\left( {1 + {x^2}} \right)} } \right]_0^2
Take 4 outside the root
18[22(1+x2)]02\Rightarrow \,\,\,\,\dfrac{1}{8}\left[ {2 \cdot 2\sqrt {\left( {1 + {x^2}} \right)} } \right]_0^2
18[4(1+x2)]02\Rightarrow \,\,\,\,\dfrac{1}{8}\left[ {4\sqrt {\left( {1 + {x^2}} \right)} } \right]_0^2
On simplification, we get
12[(1+x2)]02\Rightarrow \,\,\,\,\dfrac{1}{2}\left[ {\sqrt {\left( {1 + {x^2}} \right)} } \right]_0^2
Now, apply the upper and limit to the independent variable xx.
12[(1+22)(1+02)]\Rightarrow \,\,\,\,\dfrac{1}{2}\left[ {\sqrt {\left( {1 + {2^2}} \right)} - \sqrt {\left( {1 + {0^2}} \right)} } \right]
12[(1+4)(1+0)]\Rightarrow \,\,\,\,\dfrac{1}{2}\left[ {\sqrt {\left( {1 + 4} \right)} - \sqrt {\left( {1 + 0} \right)} } \right]
12[51]\Rightarrow \,\,\,\,\dfrac{1}{2}\left[ {\sqrt 5 - \sqrt 1 } \right]
12[51]\Rightarrow \,\,\,\,\dfrac{1}{2}\left[ {\sqrt 5 - 1} \right]

Hence the integrated value of 02x4+4x2dx\int_0^2 {\dfrac{x}{{\sqrt {4 + 4{x^2}} }}} \,dx is 12[51]\dfrac{1}{2}\left[ {\sqrt 5 - 1} \right].

Note: In integration we have two different kinds of integration one is definite integral and the indefinite integral. In a definite integral we have a limits point, by substituting the limits points we simplify the given function. whereas in indefinite integral the limit points are not mentioned.