Solveeit Logo

Question

Question: How do you integrate \[\left( {\dfrac{1}{{{e^x} + 1}}} \right)dx\]?...

How do you integrate (1ex+1)dx\left( {\dfrac{1}{{{e^x} + 1}}} \right)dx?

Explanation

Solution

We use the substitution of the exponential term and convert the complete equation in terms of the new variable. Then use integration by parts to solve for the value of integration.

Complete step-by-step answer:
We have to solve for the value of (1ex+1)dx\int {\left( {\dfrac{1}{{{e^x} + 1}}} \right)dx} … (1)
Let us substitute the value of ex=t{e^x} = t
Then differentiating both sides of the equation we get
exdx=dt\Rightarrow {e^x}dx = dt
Shift all values except dx to right side of the equation
dx=dtex\Rightarrow dx = \dfrac{{dt}}{{{e^x}}}
Put the value of ex=t{e^x} = tin RHS of the equation
dx=dtt\Rightarrow dx = \dfrac{{dt}}{t} … (2)
Now substitute the value of ex=t{e^x} = t and the value of dx from equation (2) in equation (1)
(1ex+1)dx=1t(1t+1)dt\Rightarrow \int {\left( {\dfrac{1}{{{e^x} + 1}}} \right)dx} = \int {\dfrac{1}{t}\left( {\dfrac{1}{{t + 1}}} \right)dt}
Now we know the term that has to be integrated can be broken using by parts method.
We write the integrand as sum of two integrands and solve for their respective coefficients
1t(1t+1)=At+Bt+1\Rightarrow \dfrac{1}{t}\left( {\dfrac{1}{{t + 1}}} \right) = \dfrac{A}{t} + \dfrac{B}{{t + 1}} … (3)
Take LCM on both sides of the equation
1t(t+1)=A(t+1)+Btt(t+1)\Rightarrow \dfrac{1}{{t(t + 1)}} = \dfrac{{A(t + 1) + Bt}}{{t(t + 1)}}
Cancel same denominators from both sides of the equation
1=A(t+1)+Bt\Rightarrow 1 = A(t + 1) + Bt
Now when we put the value of t=1t = - 1we get
1=A(1+1)+B(1)\Rightarrow 1 = A( - 1 + 1) + B( - 1)
1=A×(0)+B(1)\Rightarrow 1 = A \times (0) + B( - 1)
1=B(1)\Rightarrow 1 = B( - 1)
Multiply both sides by -1
1=B\Rightarrow - 1 = B … (4)
Now when we put the value of t=0t = 0we get
1=A(0+1)+B(0)\Rightarrow 1 = A(0 + 1) + B(0)
1=A×(1)\Rightarrow 1 = A \times (1)
1=A\Rightarrow 1 = A … (5)
Substitute the values of A and B in equation (3)
1t(1t+1)=1t+1t+1\Rightarrow \dfrac{1}{t}\left( {\dfrac{1}{{t + 1}}} \right) = \dfrac{1}{t} + \dfrac{{ - 1}}{{t + 1}}
1t(1t+1)=1t1t+1\Rightarrow \dfrac{1}{t}\left( {\dfrac{1}{{t + 1}}} \right) = \dfrac{1}{t} - \dfrac{1}{{t + 1}}
Then the integration becomes 1t(1t+1)dt=1tdt1t+1dt\int {\dfrac{1}{t}\left( {\dfrac{1}{{t + 1}}} \right)} dt = \int {\dfrac{1}{t}dt - \int {\dfrac{1}{{t + 1}}} } dt
Since we know 1xdx=logx+C\int {\dfrac{1}{x}dx = \log x} + C, we can write the integration as
1tdt1t+1dt=logtlog(1+t)+C\Rightarrow \int {\dfrac{1}{t}dt - \int {\dfrac{1}{{t + 1}}} } dt = \log t - \log (1 + t) + C
We know property of log that logmlogn=logmn\log m - \log n = \log \dfrac{m}{n}
1tdt1t+1dt=logt1+t+C\Rightarrow \int {\dfrac{1}{t}dt - \int {\dfrac{1}{{t + 1}}} } dt = \log \dfrac{t}{{1 + t}} + C
Substitute the value of ex=t{e^x} = t
1tdt1t+1dt=logex1+ex+C\Rightarrow \int {\dfrac{1}{t}dt - \int {\dfrac{1}{{t + 1}}} } dt = \log \dfrac{{{e^x}}}{{1 + {e^x}}} + C

\therefore Integration of (1ex+1)dx\left( {\dfrac{1}{{{e^x} + 1}}} \right)dx is logex1+ex+C\log \dfrac{{{e^x}}}{{1 + {e^x}}} + C

Note:
Many students make the mistake of cancelling the log function from the exponential function in the last step which is wrong as the log function is applied on the complete fraction, so to open it we will have to open the fraction first and then cancel it which is of no use.