Solveeit Logo

Question

Question: How do you integrate \[{\left( {\csc 2x - \cot 2x} \right)^2}dx\]?...

How do you integrate (csc2xcot2x)2dx{\left( {\csc 2x - \cot 2x} \right)^2}dx?

Explanation

Solution

Hint : Here in this question, we have to find the integrated value of a given trigonometric function. Firstly, we have to rewrite a given equation using a definition of trigonometric ratios i.e., cscθ=1sinθ\csc \theta = \dfrac{1}{{\sin \theta }} and cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }} then later by using partial fractions method. I would try Integration by Partial Fractions when an integrand is a rational function with its denominator can be factored out into smaller factors and by further simplifying using the standard integration formula. To get the required solution.

Complete step by step solution:
Consider
(csc2xcot2x)2dx\Rightarrow \,\,\int {{{\left( {\csc 2x - \cot 2x} \right)}^2}dx}---------(1)
As we know the definition of trigonometric ratios:
Cosecant is a reciprocal of sine i.e., cscθ=1sinθ\csc \theta = \dfrac{1}{{\sin \theta }} and
Cotangent is a ratio between cosine and sine i.e., cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}
Then, equation (1) can be rewritten as
(1sin2xcos2xsin2x)2dx\Rightarrow \,\,\int {{{\left( {\dfrac{1}{{\sin 2x}} - \dfrac{{\cos 2x}}{{\sin 2x}}} \right)}^2}dx}
On simplification, we have
(1cos2xsin2x)2dx\Rightarrow \,\,\int {{{\left( {\dfrac{{1 - \cos 2x}}{{\sin 2x}}} \right)}^2}dx}
Or
(1cos2x)2sin22xdx\Rightarrow \,\,\int {\dfrac{{{{\left( {1 - \cos 2x} \right)}^2}}}{{{{\sin }^2}2x}}dx}
By the trigonometric ratio sin2θ+cos2θ=1sin2θ=1cos2θ{\sin ^2}\theta + {\cos ^2}\theta = 1 \Rightarrow {\sin ^2}\theta = 1 - {\cos ^2}\theta , then
(1cos2x)21cos22xdx\Rightarrow \,\,\int {\dfrac{{{{\left( {1 - \cos 2x} \right)}^2}}}{{1 - {{\cos }^2}2x}}dx}
In denominator we observed a identity a2b2=(ab)(a+b){a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)
Here, a=1a = 1 and b=cos2xb = \cos 2x, then
(1cos2x)2(1cos2x)(1+cos2x)dx\Rightarrow \,\,\int {\dfrac{{{{\left( {1 - \cos 2x} \right)}^2}}}{{\left( {1 - \cos 2x} \right)\left( {1 + \cos 2x} \right)}}dx}
On simplification, we get
1cos2x1+cos2xdx\Rightarrow \,\,\int {\dfrac{{1 - \cos 2x}}{{1 + \cos 2x}}dx}--------(2)
Now, the integrand (the expression after the integral sign) is in the form of an algebraic fraction and the integral cannot be evaluated by simple methods, the fraction needs to be expressed in partial fractions before integration takes place.
The steps needed to decompose an algebraic fraction into its partial fractions results from a consideration of the reverse process − addition (or subtraction).
Separate the fraction that we wish to decompose in to multiple fractions. The factor of xx in the denominator has a power higher than 1, then the coefficients in the numerator should reflect this higher power.
To use the Method of Partial Fractions, we let, for,   A,BR,:\;A,B \in R,:
The function of equation (2) can be written as
1cos2x1+cos2x=A1+cos2x+B\Rightarrow \,\,\,\dfrac{{1 - \cos 2x}}{{1 + \cos 2x}} = \dfrac{A}{{1 + \cos 2x}} + B--------(3)
Take (1+cos2x)\left( {1 + \cos 2x} \right) as LCM in RHS, then
1cos2x=A+B(1+cos2x)\Rightarrow \,\,\,1 - \cos 2x = A + B\left( {1 + \cos 2x} \right)
1cos2x=A+B+Bcos2x\Rightarrow \,\,\,1 - \cos 2x = A + B + B\cos 2x----------(4)
By comparing the constant coefficient on both side, we have
A+B=1\Rightarrow \,\,\,A + B = 1
By comparing the cos2x\cos 2x co-efficient on both side, we have
B=1\Rightarrow \,\,\,B = - 1
B=1\therefore \,\,\,B = - 1
Then AA value is:
A+1=1\Rightarrow \,\,\,A + - 1 = 1
A=1+1\Rightarrow \,\,\,A = 1 + 1
A=2\therefore \,\,\,A = 2
Substitute the value of AA and BBin equation (3):
1cos2x1+cos2x=21+cos2x+(1)\Rightarrow \,\,\,\dfrac{{1 - \cos 2x}}{{1 + \cos 2x}} = \dfrac{2}{{1 + \cos 2x}} + \left( { - 1} \right)
1cos2x1+cos2x=21+cos2x1\Rightarrow \,\,\,\dfrac{{1 - \cos 2x}}{{1 + \cos 2x}} = \dfrac{2}{{1 + \cos 2x}} - 1
Integrate each fraction with respect to xx
1cos2x1+cos2xdx=21+cos2xdx1dx\Rightarrow \,\,\,\int {\dfrac{{1 - \cos 2x}}{{1 + \cos 2x}}\,dx} = \int {\dfrac{2}{{1 + \cos 2x}}\,dx} - \int {1\,dx}----(5)
By integrating 21+cos2xdx\Rightarrow \,\,\,\int {\dfrac{2}{{1 + \cos 2x}}\,dx} we get
By using the trigonometric ratio sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 and cos2θ=cos2θsin2θ\,\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta , then
2sin2x+cos2x+cos2xsin2xdx\Rightarrow \,\,\,\int {\dfrac{2}{{{{\sin }^2}x + {{\cos }^2}x + \,{{\cos }^2}x - {{\sin }^2}x}}\,dx}
On simplification, we have
22cos2xdx\Rightarrow \,\,\,\int {\dfrac{2}{{2{{\cos }^2}x}}\,dx}
1cos2xdx\Rightarrow \,\,\,\int {\dfrac{1}{{{{\cos }^2}x}}\,dx}
By using the definition of trigonometric ratio secθ=1cosθ\sec \theta = \dfrac{1}{{\cos \theta }}, then
sec2xdx\Rightarrow \,\,\,\int {{{\sec }^2}x\,dx}
On integrating, we get
tanx+c1\Rightarrow \,\,\,\tan x + {c_1}-------(a)
Next, integrate
1dx\Rightarrow \,\,\,\int {1\,dx}
On integrating, we get
x+c2\Rightarrow \,\,\,x + {c_2}-------(b)
Hence, substitute the (a) and (b) in equation (5) to get the required solution
1cos2x1+cos2xdx=tanx+c1xc2\Rightarrow \,\,\,\int {\dfrac{{1 - \cos 2x}}{{1 + \cos 2x}}\,dx} = \tan x + {c_1} - x - {c_2}
Where, c1{c_1} and c2{c_2} are integrating constant which is equal to CC
(csc2xcot2x)2dx=1cos2x1+cos2xdx=tanxx+C\Rightarrow \,\,\int {{{\left( {\csc 2x - \cot 2x} \right)}^2}dx} = \,\int {\dfrac{{1 - \cos 2x}}{{1 + \cos 2x}}\,dx} = \tan {x} - x + C
Where CC is an integrating constant.
So, the correct answer is “1cos2x1+cos2xdx=tanxx+C\int {\dfrac{{1 - \cos 2x}}{{1 + \cos 2x}}\,dx} = \tan {x} - x + C”.

Note : When the function is in the form of a fraction where the denominator of the function is in the form of a polynomial, then we use the partial fractions and then we integrate the function. The integration is a reciprocal of the differentiation and by using the standard formulas of integration we determine the values.