Solveeit Logo

Question

Question: How do you integrate \[\int {x{{\tan }^{ - 1}}x} \,\,dx\] by integration by parts method?...

How do you integrate xtan1xdx\int {x{{\tan }^{ - 1}}x} \,\,dx by integration by parts method?

Explanation

Solution

Hint : Here in this question given an indefinite integral, we have to find the integrated value of a given function. It can be solved by the method of integration by parts by separating the function as uu and vv , later integrated by using the standard formulas of integration. And by further simplification we get the required solution.

Complete step-by-step answer :
Integration by parts is a technique for performing indefinite integration or definite integration by expanding the differential of a product of functions d(uv)d\left( {uv} \right) and expressing the original integral in terms of a known integral vdu\int {v\,du} . A single integration by parts starts with
d(uv)=udv+vdud(uv) = u\,dv + v\,du
and integrates both sides,
d(uv)=uv=udv+vdu.\int {d(uv)} = uv = \int {u\,dv} + \int {v\,} du. ------(1)
Rearranging gives
udv=uvvdu.\int {u\,} dv = uv - \int v \,du. ---------(2)
Consider the given function xtan1xdx\int {x{{\tan }^{ - 1}}x} \,\,dx -----(3)
Given an integral which is not having any upper and lower limit then it’s an indefinite integral. Hence we add the C while integrating. Where, C is an arbitrary constant called as the constant of integration.
we can pick uu as tan1x{\tan ^{ - 1}}x , because who knows the antiderivative of tan1x{\tan ^{ - 1}}x is 11+x2\dfrac{1}{{1 + {x^2}}}
Then, of course dv=xdxdv = x\,dx .
i.e., u=tan1xu = {\tan ^{ - 1}}x dudx=11+x2 \Rightarrow \,\,\dfrac{{du}}{{dx}} = \dfrac{1}{{1 + {x^2}}} and
dv=xdxdv = x\,dx v=x22 \Rightarrow \,\,v = \dfrac{{{x^2}}}{2}
Then by the method of integration by parts i.e., by the equation (2)
xtan1xdx=tan1xx22x2211+x2dx\Rightarrow \int {x{{\tan }^{ - 1}}x} \,\,dx = \,\,{\tan ^{ - 1}}x\dfrac{{{x^2}}}{2} - \int {\dfrac{{{x^2}}}{2}\dfrac{1}{{1 + {x^2}}}\,} dx
xtan1xdx=tan1xx2212x21+x2dx\Rightarrow \int {x{{\tan }^{ - 1}}x} \,\,dx = \,\,{\tan ^{ - 1}}x\dfrac{{{x^2}}}{2} - \dfrac{1}{2}\int {\dfrac{{{x^2}}}{{1 + {x^2}}}\,} dx
Add and subtract 1 in the numerator of second term in RHS
xtan1xdx=tan1xx2212[x2+111+x2]dx\Rightarrow \int {x{{\tan }^{ - 1}}x} \,\,dx = \,\,{\tan ^{ - 1}}x\dfrac{{{x^2}}}{2} - \dfrac{1}{2}\left[ {\int {\dfrac{{{x^2} + 1 - 1}}{{1 + {x^2}}}\,} } \right] dx
xtan1xdx=tan1xx2212[x2+11+x2dx11+x2dx]\Rightarrow \int {x{{\tan }^{ - 1}}x} \,\,dx = \,\,{\tan ^{ - 1}}x\dfrac{{{x^2}}}{2} - \dfrac{1}{2}\left[ {\int {\dfrac{{{x^2} + 1}}{{1 + {x^2}}}\,} dx - \int {\dfrac{1}{{1 + {x^2}}}\,} dx} \right]
On simplification, we get
xtan1xdx=tan1xx2212[1dx11+x2dx]\Rightarrow \int {x{{\tan }^{ - 1}}x} \,\,dx = \,\,{\tan ^{ - 1}}x\dfrac{{{x^2}}}{2} - \dfrac{1}{2}\left[ {\int {1\,} dx - \int {\dfrac{1}{{1 + {x^2}}}\,} dx} \right]
On integrating the second term of RHS, we get
xtan1xdx=tan1xx2212[xtan1x]+C\Rightarrow \int {x{{\tan }^{ - 1}}x} \,\,dx = \,\,{\tan ^{ - 1}}x\dfrac{{{x^2}}}{2} - \dfrac{1}{2}\left[ {x - {{\tan }^{ - 1}}x} \right] + C
xtan1xdx=x2tan1x2x2+tan1x2+C\Rightarrow \int {x{{\tan }^{ - 1}}x} \,\,dx = \,\,\dfrac{{{x^2}{{\tan }^{ - 1}}x}}{2} - \dfrac{x}{2} + \dfrac{{{{\tan }^{ - 1}}x}}{2} + C
Where C is an integrating constant.
Hence, the value of xtan1xdx\int {x{{\tan }^{ - 1}}x} \,\,dx is x2tan1x2x2+tan1x2+C\,\,\dfrac{{{x^2}{{\tan }^{ - 1}}x}}{2} - \dfrac{x}{2} + \dfrac{{{{\tan }^{ - 1}}x}}{2} + C .
So, the correct answer is “ x2tan1x2x2+tan1x2+C\,\,\dfrac{{{x^2}{{\tan }^{ - 1}}x}}{2} - \dfrac{x}{2} + \dfrac{{{{\tan }^{ - 1}}x}}{2} + C ”.

Note : In integration we have two kinds one is definite integral and other one is indefinite integral. This question comes under the indefinite integral. While integrating the function which is in the form of product or division form we use the integration by parts method. By applying the integration by parts we obtain the solution.