Solveeit Logo

Question

Question: How do you integrate \(\int {x{{\sec }^{ - 1}}xdx} \)?...

How do you integrate xsec1xdx\int {x{{\sec }^{ - 1}}xdx} ?

Explanation

Solution

This question will be solved by integration by parts. In the integration by parts method if we integrate f(x)g(x)f\left( x \right)g\left( x \right) we can write f(x)g(x)dx=f(x)g(x)dxf(x)(g(x)dx)dx\int {f\left( x \right)g\left( x \right)dx} = f\left( x \right)\int {g\left( x \right)dx} - \int {f'\left( x \right)\left( {\int {g\left( x \right)dx} } \right)dx} where f(x)=df(x)dxf'\left( x \right) = \dfrac{{df\left( x \right)}}{{dx}}. While choosing f(x)f\left( x \right) and g(x)g\left( x \right) choose in such a way that solving f(x)(g(x)dx)dx\int {f'\left( x \right)\left( {\int {g\left( x \right)dx} } \right)dx} would be easier. For example, while integrating xexx{e^x} our f(x)f\left( x \right) would be xx and g(x)g\left( x \right) will be ex{e^x} so that solving f(x)(g(x)dx)dx\int {f'\left( x \right)\left( {\int {g\left( x \right)dx} } \right)dx} is easier.

Complete step-by-step solution:
The integration by parts formula can be further written as integral of the product of any two functions = (First function × Integral of the second function) – Integral of [ (differentiation of the first function) × Integral of the second function]
The formula for integration by parts is
f(x)g(x)dx=f(x)g(x)dxf(x)(g(x)dx)dx\int {f\left( x \right)g\left( x \right)dx} = f\left( x \right)\int {g\left( x \right)dx} - \int {f'\left( x \right)\left( {\int {g\left( x \right)dx} } \right)dx}
Where f(x)=df(x)dxf'\left( x \right) = \dfrac{{df\left( x \right)}}{{dx}}.
In the given question we have to integrate xsec1xx{\sec ^{ - 1}}x by integration by parts method.
So, we can choose f(x)=sec1xf\left( x \right) = {\sec ^{ - 1}}x and g(x)=xg\left( x \right) = x.
Substituting the values in the formula for integration by parts, we get
xsec1xdx=sec1xxdxddx(sec1x)(xdx)dx\Rightarrow \int {x{{\sec }^{ - 1}}xdx} = {\sec ^{ - 1}}x\int {xdx} - \int {\dfrac{d}{{dx}}\left( {{{\sec }^{ - 1}}x} \right)\left( {\int {xdx} } \right)dx}
We know that ddx(sec1x)=1xx21\dfrac{d}{{dx}}\left( {{{\sec }^{ - 1}}x} \right) = \dfrac{1}{{x\sqrt {{x^2} - 1} }} and xdx=x22\int {xdx} = \dfrac{{{x^2}}}{2}. Substituting these values in the above equation,
xsec1xdx=sec1x(x22)1xx21×x22dx\Rightarrow \int {x{{\sec }^{ - 1}}xdx} = {\sec ^{ - 1}}x\left( {\dfrac{{{x^2}}}{2}} \right) - \int {\dfrac{1}{{x\sqrt {{x^2} - 1} }} \times \dfrac{{{x^2}}}{2}dx}
Simplify the terms,
xsec1xdx=x2sec1x212xx21dx\Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{1}{2}\int {\dfrac{x}{{\sqrt {{x^2} - 1} }}dx}
Let u=x21u = {x^2} - 1. Then,
du=2xdx\Rightarrow du = 2xdx
Divide both sides into both sides,
12du=xdx\Rightarrow \dfrac{1}{2}du = xdx
Substitute the values,
xsec1xdx=x2sec1x21212udu\Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{1}{2}\int {\dfrac{1}{{2\sqrt u }}du}
Simplify the terms,
xsec1xdx=x2sec1x214u12du\Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{1}{4}\int {{u^{ - \dfrac{1}{2}}}du}
Integrate the terms,
xsec1xdx=x2sec1x214u1212+C\Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{1}{4}\dfrac{{{u^{\dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + C
Simplify the terms,
xsec1xdx=x2sec1x2u2+C\Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{{\sqrt u }}{2} + C
Substitute back the value of uu,
xsec1xdx=x2sec1x2x212+C\Rightarrow \int {x{{\sec }^{ - 1}}xdx} = \dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{{\sqrt {{x^2} - 1} }}{2} + C

Hence, the integral of xsec1xx{\sec ^{ - 1}}x is x2sec1x2x212+C\dfrac{{{x^2}{{\sec }^{ - 1}}x}}{2} - \dfrac{{\sqrt {{x^2} - 1} }}{2} + C.

Note: Always remember the formula for integrating into the integration by parts method. Some people make mistakes while choosing f(x) and g(x) so carefully choose f(x) and g(x) such that integration would be easier to solve. Sometimes when we solve a problem, we find the function of L.H.S on the right-hand side, in that case, we should take our L.H.S as a variable like we did in the above question then it would be easier to solve. We just have to find the value of I.