Solveeit Logo

Question

Question: How do you integrate \(\int{\sqrt{4-9{{x}^{2}}}}\) using trigonometric substitutions?...

How do you integrate 49x2\int{\sqrt{4-9{{x}^{2}}}} using trigonometric substitutions?

Explanation

Solution

In the problem they have asked to use the trigonometric substitutions, by looking the given equation we will use the trigonometric identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1. So, we will take the substitution 9x2=4sin2y9{{x}^{2}}=4{{\sin }^{2}}y. From this equation we will calculate the value of xx and dxdx in terms of yy and dydy, by using the algebraic formulas and differentiation formulas. Now we will convert the given equation in terms of yy and dydy by substituting the value of xx and dxdx in the given equation. Now we will simplify the obtained equation by applying the trigonometric formula cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1. After integrating the above value, we will get the result in terms of yy, but we need to calculate the result in terms of xx, so we will calculate the value of yy from our assumption i.e., 9x2=4sin2y9{{x}^{2}}=4{{\sin }^{2}}y and substitute it in the obtained equation to get the result.

Complete step by step answer:
Given that, 49x2\int{\sqrt{4-9{{x}^{2}}}}.
Let us take the substitution 9x2=4sin2y9{{x}^{2}}=4{{\sin }^{2}}y.
From the above substitution the value of xx can be obtained by taking square root on both sides of the equation, then
9x2=4sin2y 3x=2siny x=23siny....(i) \begin{aligned} & \sqrt{9{{x}^{2}}}=\sqrt{4{{\sin }^{2}}y} \\\ & \Rightarrow 3x=2\sin y \\\ & \Rightarrow x=\dfrac{2}{3}\sin y....\left( \text{i} \right) \\\ \end{aligned}
Differentiating the above value, then we will get
dx=23cosy.dydx=\dfrac{2}{3}\cos y.dy
Now substituting the all values, we have in the given equation, then we will get
49x2dx=44sin2y23cosydy\int{\sqrt{4-9{{x}^{2}}}}dx=\int{\sqrt{4-4{{\sin }^{2}}y}}\dfrac{2}{3}\cos ydy
Taking 44 common in the square root function, then we will get
49x2dx=234(1sin2y)cosydy\Rightarrow \int{\sqrt{4-9{{x}^{2}}}}dx=\int{\dfrac{2}{3}\sqrt{4\left( 1-{{\sin }^{2}}y \right)}}\cos ydy
From the trigonometric identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1, we have the value 1sin2y=cos2y1-{{\sin }^{2}}y={{\cos }^{2}}y, then the above equation modified as
49x2dx=23×2cos2ycosydy 49x2dx=43cos2ydy \begin{aligned} & \Rightarrow \int{\sqrt{4-9{{x}^{2}}}dx}=\int{\dfrac{2}{3}\times 2\sqrt{{{\cos }^{2}}y}\cos y}dy \\\ & \Rightarrow \int{\sqrt{4-9{{x}^{2}}}dx}=\int{\dfrac{4}{3}{{\cos }^{2}}y}dy \\\ \end{aligned}
From the trigonometric equation cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1, then value of cos2y=1+cos2y2{{\cos }^{2}}y=\dfrac{1+\cos 2y}{2}, then the above equation is modified as
49x2dx=431+cos2y2dy 49x2dx=43×12[1dy+cos2ydy] \begin{aligned} & \Rightarrow \sqrt{4-9{{x}^{2}}}dx=\dfrac{4}{3}\int{\dfrac{1+\cos 2y}{2}dy} \\\ & \Rightarrow \sqrt{4-9{{x}^{2}}}dx=\dfrac{4}{3}\times \dfrac{1}{2}\left[ \int{1dy}+\int{\cos 2ydy} \right] \\\ \end{aligned}
We have the integration formulas 1.dy=y+C\int{1.dy}=y+C, cos2ydy=12sin2y+C\int{\cos 2y}dy=\dfrac{1}{2}\sin 2y+C, then we will get
49x2dx=23[y+12sin2y]+C 49x2dx=23y+13sin2y+C \begin{aligned} & \Rightarrow \sqrt{4-9{{x}^{2}}}dx=\dfrac{2}{3}\left[ y+\dfrac{1}{2}\sin 2y \right]+C \\\ & \Rightarrow \sqrt{4-9{{x}^{2}}}dx=\dfrac{2}{3}y+\dfrac{1}{3}\sin 2y+C \\\ \end{aligned}
We have the trigonometric formula sin2θ=2sinθ.cosθ\sin 2\theta =2\sin \theta .\cos \theta , then we will have
49x2dx=23y+13×2sinycosy+C\Rightarrow \sqrt{4-9{{x}^{2}}}dx=\dfrac{2}{3}y+\dfrac{1}{3}\times 2\sin y\cos y+C
From equation (i)\left( \text{i} \right), we have
x=23siny siny=32x...(ii) y=sin1(32x)...(iii) \begin{aligned} & x=\dfrac{2}{3}\sin y \\\ & \Rightarrow \sin y=\dfrac{3}{2}x...\left( \text{ii} \right) \\\ & \Rightarrow y={{\sin }^{-1}}\left( \dfrac{3}{2}x \right)...\left( \text{iii} \right) \\\ \end{aligned}
From trigonometric identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1, the value of cosy\cos y will be
cos2y=1sin2y cosy=1(32x)2....(iv) \begin{aligned} & {{\cos }^{2}}y=1-{{\sin }^{2}}y \\\ & \Rightarrow \cos y=\sqrt{1-{{\left( \dfrac{3}{2}x \right)}^{2}}}....\left( \text{iv} \right) \\\ \end{aligned}
From equations (ii)\left( \text{ii} \right), (iii)\left( \text{iii} \right), (iv)\left( \text{iv} \right), the value of 49x2\int{\sqrt{4-9{{x}^{2}}}} is
49x2dx=23sin1(32x)+23(32x)(194x2)+C 49x2dx=23sin1(32x)+12x49x2+C \begin{aligned} & \Rightarrow \int{\sqrt{4-9{{x}^{2}}}dx}=\dfrac{2}{3}{{\sin }^{-1}}\left( \dfrac{3}{2}x \right)+\dfrac{2}{3}\left( \dfrac{3}{2}x \right)\left( \sqrt{1-\dfrac{9}{4}{{x}^{2}}} \right)+C \\\ & \Rightarrow \int{\sqrt{4-9{{x}^{2}}}dx}=\dfrac{2}{3}{{\sin }^{-1}}\left( \dfrac{3}{2}x \right)+\dfrac{1}{2}x\sqrt{4-9{{x}^{2}}}+C \\\ \end{aligned}

Hence the value of 49x2dx\int{\sqrt{4-9{{x}^{2}}}dx} is x249x2+23sin1(32x)+C\dfrac{x}{2}\sqrt{4-9{{x}^{2}}}+\dfrac{2}{3}{{\sin }^{-1}}\left( \dfrac{3}{2}x \right)+C

Note: In the problem they have specially mentioned to use the trigonometric substitution, so we have followed the above procedure otherwise we have direct formula for this problem i.e., a2x2dx=x2a2x2+a22sin1(xa)+C\int{\sqrt{{{a}^{2}}-{{x}^{2}}}dx}=\dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\left( \dfrac{x}{a} \right)+C. We will convert the given equation in the above form and use this formula to get the result.