Solveeit Logo

Question

Question: How do you integrate \(\int{{{\sin }^{4}}\left( 2x \right)dx}\)?...

How do you integrate sin4(2x)dx\int{{{\sin }^{4}}\left( 2x \right)dx}?

Explanation

Solution

We first try to convert the trigonometric form into its multiple angle form. We use the theorem of cos2α=12sin2α=2cos2α1\cos 2\alpha =1-2{{\sin }^{2}}\alpha =2{{\cos }^{2}}\alpha -1 and replace the square terms. Then to integrate the ratio cos we use the theorem cosmxdx=sinmxm+c\int{\cos mxdx}=\dfrac{\sin mx}{m}+c and find the final solution.

Complete step by step solution:
We first use the theorem of multiple angles to find the simplified form of sin4(2x){{\sin }^{4}}\left( 2x \right).
We know that cos2α=12sin2α=2cos2α1\cos 2\alpha =1-2{{\sin }^{2}}\alpha =2{{\cos }^{2}}\alpha -1 which gives 2sin2α=1cos2α2{{\sin }^{2}}\alpha =1-\cos 2\alpha .
We replace the value of α\alpha with 2x2x and reform sin4(2x){{\sin }^{4}}\left( 2x \right) as
sin4(2x)=(sin22x)2=(2sin22x)24{{\sin }^{4}}\left( 2x \right)={{\left( {{\sin }^{2}}2x \right)}^{2}}=\dfrac{{{\left( 2{{\sin }^{2}}2x \right)}^{2}}}{4}.
Now we replace the values to get (2sin22x)24=(1cos4x)24\dfrac{{{\left( 2{{\sin }^{2}}2x \right)}^{2}}}{4}=\dfrac{{{\left( 1-\cos 4x \right)}^{2}}}{4}.
Now we break the square part to get (1cos4x)2=1+cos24x2cos4x{{\left( 1-\cos 4x \right)}^{2}}=1+{{\cos }^{2}}4x-2\cos 4x.
We again the use the theorem of multiple angles 2cos2α=1+cos2α2{{\cos }^{2}}\alpha =1+\cos 2\alpha for cos24x{{\cos }^{2}}4x and get
cos24x=2cos24x2=1+cos8x2{{\cos }^{2}}4x=\dfrac{2{{\cos }^{2}}4x}{2}=\dfrac{1+\cos 8x}{2}.
So, the final form of the replacement is
sin4(2x)=(1cos4x)24=1+cos24x2cos4x4=1+1+cos8x22cos4x4{{\sin }^{4}}\left( 2x \right)=\dfrac{{{\left( 1-\cos 4x \right)}^{2}}}{4}=\dfrac{1+{{\cos }^{2}}4x-2\cos 4x}{4}=\dfrac{1+\dfrac{1+\cos 8x}{2}-2\cos 4x}{4}.
We simplify the equation to get sin4(2x)=38+cos8x8cos4x2{{\sin }^{4}}\left( 2x \right)=\dfrac{3}{8}+\dfrac{\cos 8x}{8}-\dfrac{\cos 4x}{2}.
We now replace the value in the integration to get
sin4(2x)dx=[38+cos8x8cos4x2]dx\int{{{\sin }^{4}}\left( 2x \right)dx}=\int{\left[ \dfrac{3}{8}+\dfrac{\cos 8x}{8}-\dfrac{\cos 4x}{2} \right]dx}.
We know that cosmxdx=sinmxm+c\int{\cos mx dx}=\dfrac{\sin mx}{m}+c. We apply the rule to get
[38+cos8x8cos4x2]dx =38x+sin8x64sin4x8+c \begin{aligned} & \int{\left[ \dfrac{3}{8}+\dfrac{\cos 8x}{8}-\dfrac{\cos 4x}{2} \right]dx} \\\ & =\dfrac{3}{8}x+\dfrac{\sin 8x}{64}-\dfrac{\sin 4x}{8}+c \\\ \end{aligned}
Therefore, the integral form of sin4(2x)dx\int{{{\sin }^{4}}\left( 2x \right)dx} is 38x+sin8x64sin4x8+c\dfrac{3}{8}x+\dfrac{\sin 8x}{64}-\dfrac{\sin 4x}{8}+c.

Note: In any cases of trigonometric multiple or submultiple angles, the main aim to solve the problem is to convert the square terms into multiple angle form without any squares. In that cases the integral form of we only have to find the forms for cosmxdx=sinmxm+c\int{\cos mx dx}=\dfrac{\sin mx}{m}+c or sinmxdx=cosmxm+c\int{\sin mxdx}=\dfrac{-\cos mx}{m}+c.