Solveeit Logo

Question

Question: How do you integrate \(\int{{{\sin }^{2}}x}\)by integration by parts method?...

How do you integrate sin2x\int{{{\sin }^{2}}x}by integration by parts method?

Explanation

Solution

In integration by parts method if we integrate f(x)g(x)f\left( x \right)g\left( x \right) we can write
f(x)g(x)dx=f(x)g(x)dxf(x)(g(x)dx)dx\int{f\left( x \right)g\left( x \right)dx=f\left( x \right)\int{g\left( x \right)dx-\int{f'\left( x \right)}}\left( \int{g\left( x \right)dx} \right)dx} wheref(x)=df(x)dxf'\left( x \right)=\dfrac{df\left( x \right)}{dx}.
While choosing f(x)f\left( x \right) and g(x)g\left( x \right) choose in such a way that solving f(x)(g(x)dx)dx\int{f'\left( x \right)}\left( \int{g\left( x \right)dx} \right)dx would be easier. For example while integrating xexx{{e}^{x}} our f(x)f\left( x \right) would be x and g(x)g\left( x \right) will be ex{{e}^{x}}so that solving f(x)(g(x)dx)dx\int{f'\left( x \right)}\left( \int{g\left( x \right)dx} \right)dx is easier.

Complete step by step answer:
The formula for integration by parts is f(x)g(x)dx=f(x)g(x)dxf(x)(g(x)dx)dx\int{f\left( x \right)g\left( x \right)dx=f\left( x \right)\int{g\left( x \right)dx-\int{f'\left( x \right)}}\left( \int{g\left( x \right)dx} \right)dx}
Wheref(x)=df(x)dxf'\left( x \right)=\dfrac{df\left( x \right)}{dx}.
In the given question we have to integrate sin2x{{\sin }^{2}}x by integration by parts method.
So f(x)g(x)f\left( x \right)g\left( x \right)=sin2x{{\sin }^{2}}x
We can choose f(x)=sinxf\left( x \right)=\sin x and g(x)=sinxg\left( x \right)=\sin x so we can write
sin2xdx=sinx×sinxdx\int{{{\sin }^{2}}xdx=\int{\sin x}}\times \sin xdx
Substituting f(x)f\left( x \right) as sinx\sin x,g(x)g\left( x \right) as sinx\sin x and f(x)g(x)f\left( x \right)g\left( x \right) as sin2x{{\sin }^{2}}x
In the formula for integration by parts we get
sin2xdx=sinxsinxdxdsinxdx(sinxdx)dx\int{{{\sin }^{2}}xdx=\sin x\int{\sin xdx-\int{\dfrac{d\sin x}{dx}\left( \int{\sin xdx} \right)}}}dx
We know that dsinxdx=cosx\dfrac{d\sin x}{dx}=\cos x and sinxdx=cosx\int{\sin xdx=-\cos x} substituting these values in the above equation
sin2xdx=sinx(cosx)cosx×(cosx)dx\Rightarrow \int{{{\sin }^{2}}xdx=\sin x\left( -\cos x \right)-\int{\cos x\times \left( -\cos x \right)}}dx
sin2xdx=sinxcosx+cos2xdx\Rightarrow \int{{{\sin }^{2}}xdx=-\sin x\cos x+\int{{{\cos }^{2}}x}}dx
We know that cos2x=1sin2x{{\cos }^{2}}x=1-{{\sin }^{2}}x substituting this value in the equation we get
sin2x=sinxcosx+(1sin2x)dx\Rightarrow \int{{{\sin }^{2}}x=-\sin x\cos x+\int{\left( 1-{{\sin }^{2}}x \right)dx}}
Let’s assume I=sin2xdxI=\int{{{\sin }^{2}}xdx}
Substituting I in the equation
I=sinxcosx+1dxII=-\sin x\cos x+\int{1dx-I}
By solving the equation
2I=sinxcosx+1dx2I=-\sin x\cos x+\int{1dx}
We know that
1dx=x+c1\int{1dx=x+{{c}_{1}}}
Where c1 is a constant so substituting the value in the equation we get
2I=sinxcosx+x+c12I=-\sin x\cos x+x+{{c}_{1}}
Now we can write
I=xcosxsinx2+cI=\dfrac{x-\cos x\sin x}{2}+c
where c is a constant
c=c12c=\dfrac{{{c}_{1}}}{2}
As the final answer we can write
sin2x=xsinxcosx2+c\int{{{\sin }^{2}}x=\dfrac{x-\sin x\cos x}{2}+c}
We can verify the result by solving the integration we can write
sin2x=1cos2x2{{\sin }^{2}}x=\dfrac{1-\cos 2x}{2}
And solve the integration very easily and it will match with our result.

Note: Always remember the formula for integrating in integration by parts method. Some people make mistakes while choosing f(x) and g(x) so carefully choose f(x) and g(x) such that integration would be easier to solve. Sometimes when we solve a problem we find the function of L.H.S in the right hand side in that case we should take our L.H.S as variable I like we did in the above question then it would be easier to solve we just have to find the value of I.