Solveeit Logo

Question

Question: How do you integrate \(\int{{{\sec }^{2}}x\tan x}\) ?...

How do you integrate sec2xtanx\int{{{\sec }^{2}}x\tan x} ?

Explanation

Solution

Here in this problem, we need to perform integration of the given trigonometric expression. There are various integration formulae which we will be using here. Apart from that, Pythagoras identities of trigonometry can also be used. We will solve using the substitution method in integration.

Complete step-by-step solution:
Let’s begin to solve the problem.
Some important integration rules are:
1dx=x+C adx=ax+C xndx=xn+1n+1+C sinxdx=cosx+C cosxdx=sinx+C sec2xdx=tanx+C cosec2xdx=cotx+C secx(tanx)dx=secx+C cosecx(cotx)dx=cosecx+C \begin{aligned} & \Rightarrow \int{1dx=x+C} \\\ & \Rightarrow \int{adx=ax+C} \\\ & \Rightarrow \int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C} \\\ & \Rightarrow \int{\sin xdx=-\cos x+C} \\\ & \Rightarrow \int{\cos xdx=\sin x+C} \\\ & \Rightarrow \int{{{\sec }^{2}}xdx=\tan x+C} \\\ & \Rightarrow \int{\cos e{{c}^{2}}xdx=-\cot x+C} \\\ & \Rightarrow \int{\sec x\left( \tan x \right)dx=\sec x+C} \\\ & \Rightarrow \int{\cos ecx\left( \cot x \right)dx=-\cos ecx+C} \\\ \end{aligned}
Some differentiation rules are also used.
ddxsecx=secxtanx ddxtanx=sec2x \begin{aligned} & \Rightarrow \dfrac{d}{dx}\sec x=\sec x\tan x \\\ & \Rightarrow \dfrac{d}{dx}\tan x={{\sec }^{2}}x \\\ \end{aligned}
Now, write the expression which needs to be integrated.
I=sec2xtanxdx......(i)I=\int{{{\sec }^{2}}x\tan x dx}......(i)
Let u = tanx
Differentiate on both sides by using ddxtanx=sec2x\dfrac{d}{dx}\tan x={{\sec }^{2}}x, we will get:
du=sec2xdx\Rightarrow du={{\sec }^{2}}xdx
Replace all the values in equation(i) with new values by substituting ‘du’ and ‘u’ in equation(i).
I=uduI=\int{udu}
Integrate with respect to du by using xndx=xn+1n+1+C\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}, we get:
u22+C\Rightarrow \dfrac{{{u}^{2}}}{2}+C
Again substitute the value of ‘u’ in above equation we get:
tan2x2+C\Rightarrow \dfrac{{{\tan }^{2}}x}{2}+C
This is the final answer.

Note: There is an alternative method to solve this question. That method will be similar to the above method. Let’s discuss it also.
I=sec2xtanxI=\int{{{\sec }^{2}}x\tan x}
First break sec2x{{\sec }^{2}}x into secx\sec x and secx\sec x like this:
I=secxtanxsecxdx......(i)I=\int{\sec x\tan x\sec xdx}......(i)
Now, let u = secx
Differentiate both sides using ddxsecx=secxtanx\dfrac{d}{dx}\sec x=\sec x\tan x, we will get:
du=secxtanxdx\Rightarrow du=\sec x\tan xdx
Now, substitute ‘du’ and ‘u’ in equation(i) we will get:
I=uduI=\int{udu}
Integrate with respect to du by using xndx=xn+1n+1+C\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C}, we get:
u22+C\Rightarrow \dfrac{{{u}^{2}}}{2}+C
Again substitute the value of ‘u’ in above equation we get:
sec2x2+C\Rightarrow \dfrac{{{\sec }^{2}}x}{2}+C
This is another answer for the same question. For this question, the substitution method is the best approach and is mostly used in the questions of integration.