Solveeit Logo

Question

Question: How do you integrate \(\int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} \)...

How do you integrate 02πsin(mx)cos(nx)dx\int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} , m,nZm,n \in Z?

Explanation

Solution

In this question we have to find the integral value of the given function, we will find by using the trigonometric identity, sin(a+b)+sin(ab)=2sinacosb\sin \left( {a + b} \right) + \sin \left( {a - b} \right) = 2\sin a\cos b, then we will distribute the integration and by using the integration formula sinxdx=cosx\int {\sin x} dx = - \cos x, then we will apply the intervals , then we will get the required result.

Complete step by step solution:
Given function is 02πsin(mx)cos(nx)dx\int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} ,
We know that sin(a+b)+sin(ab)=2sinacosb\sin \left( {a + b} \right) + \sin \left( {a - b} \right) = 2\sin a\cos b, using the formula we get,
sin(mx)cos(nx)=12[sin(mx+nx)+sin(mxnx)]\Rightarrow \sin \left( {mx} \right)\cos \left( {nx} \right) = \dfrac{1}{2}\left[ {\sin \left( {mx + nx} \right) + \sin \left( {mx - nx} \right)} \right],
Now substituting the value, we get,
02πsin(mx)cos(nx)dx=02π12[sin(mx+nx)+sin(mxnx)]dx\Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = \int\limits_0^{2\pi } {\dfrac{1}{2}\left[ {\sin \left( {mx + nx} \right) + \sin \left( {mx - nx} \right)} \right]dx},
Now taking out the constant we get,
02πsin(mx)cos(nx)dx=1202π[sin(m+n)x+sin(mn)x]dx\Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = \dfrac{1}{2}\int\limits_0^{2\pi } {\left[ {\sin \left( {m + n} \right)x + \sin \left( {m - n} \right)x} \right]dx},
Now distribute the integration to all terms, we get,
02πsin(mx)cos(nx)dx=1202πsin(m+n)xdx+1202πsin(mn)xdx\Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = \dfrac{1}{2}\int\limits_0^{2\pi } {\sin \left( {m + n} \right)x} dx + \dfrac{1}{2}\int\limits_0^{2\pi } {\sin \left( {m - n} \right)x} dx,
Now applying the integration we get,
02πsin(mx)cos(nx)dx=12[cos(m+n)xm+n]02π12[cos(mn)xmn]02π+C\Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {m + n} \right)x}}{{m + n}}} \right]_{_0}^{2\pi } - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {m - n} \right)x}}{{m - n}}} \right]_{_0}^{2\pi } + C,
Now applying intervals we get,
02πsin(mx)cos(nx)dx=12[cos(m+n)(2π)m+ncos(m+n)0m+n]12[cos(mn)(2π)mncos(mn)0mn]+C\Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {m + n} \right)\left( {2\pi } \right)}}{{m + n}} - \dfrac{{\cos \left( {m + n} \right)0}}{{m + n}}} \right] - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {m - n} \right)\left( {2\pi } \right)}}{{m - n}} - \dfrac{{\cos \left( {m - n} \right)0}}{{m - n}}} \right] + CNow simplifying we get,
02πsin(mx)cos(nx)dx=12[cos((m+n)(2π))m+ncos0m+n]12[cos((mn)(2π))mncos0mn]+C\Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{m + n}} - \dfrac{{\cos 0}}{{m + n}}} \right] - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {\left( {m - n} \right)\left( {2\pi } \right)} \right)}}{{m - n}} - \dfrac{{\cos 0}}{{m - n}}} \right] + C
Now we know that cos0=1\cos 0 = 1, we get,
02πsin(mx)cos(nx)dx=12[cos((m+n)(2π))m+n1m+n]12[cos((mn)(2π))mn1mn]+C\Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{m + n}} - \dfrac{1}{{m + n}}} \right] - \dfrac{1}{2}\left[ {\dfrac{{\cos \left( {\left( {m - n} \right)\left( {2\pi } \right)} \right)}}{{m - n}} - \dfrac{1}{{m - n}}} \right] + C
Now distributing the constant, we get,
02πsin(mx)cos(nx)dx=[cos((m+n)(2π))2(m+n)]+12(m+n)[cos((mn)(2π))2(mn)]+12(mn)C\Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m + n} \right)}}} \right] + \dfrac{1}{{2\left( {m + n} \right)}} - \left[ {\dfrac{{\cos \left( {\left( {m - n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m - n} \right)}}} \right] + \dfrac{1}{{2\left( {m - n} \right)}}C
Now simplifying we get,
02πsin(mx)cos(nx)dx=[cos((m+n)(2π))2(m+n)]+[cos((mn)(2π))2(mn)]+12(m+n)+12(mn)C\Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m + n} \right)}}} \right] + - \left[ {\dfrac{{\cos \left( {\left( {m - n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m - n} \right)}}} \right] + \dfrac{1}{{2\left( {m + n} \right)}} + \dfrac{1}{{2\left( {m - n} \right)}}C
Now taking L.C.M, we get,
02πsin(mx)cos(nx)dx=[(mn)cos((m+n)(2π))2(m+n)(mn)+(m+n)cos((m+n)(2π))2(m+n)(mn)]\Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m + n} \right)\left( {m - n} \right)}} + \dfrac{{\left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {m + n} \right)\left( {m - n} \right)}}} \right] +2(mn)+2(m+n)4(m+n)(mn)+C + \dfrac{{2\left( {m - n} \right) + 2\left( {m + n} \right)}}{{4\left( {m + n} \right)\left( {m - n} \right)}} + C,
Now simplifying we get,
02πsin(mx)cos(nx)dx=[(mn)cos((m+n)(2π))+(m+n)cos((m+n)(2π))2(m2n2)]\Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {{m^2} - {n^2}} \right)}}} \right] +2m2n+2m+2n4(m2n2)+C + \dfrac{{2m - 2n + 2m + 2n}}{{4\left( {{m^2} - {n^2}} \right)}} + C,
Now simplifying we get,
02πsin(mx)cos(nx)dx=[(mn)cos((m+n)(2π))+(m+n)cos((m+n)(2π))2(m2n2)]\Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {{m^2} - {n^2}} \right)}}} \right]
+4m4(m2n2)+C+ \dfrac{{4m}}{{4\left( {{m^2} - {n^2}} \right)}} + C,
Now further simplification we get,
02πsin(mx)cos(nx)dx=[(mn)cos((m+n)(2π))+(m+n)cos((m+n)(2π))2(m2n2)]\Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {{m^2} - {n^2}} \right)}}} \right] +m(m2n2)+C + \dfrac{m}{{\left( {{m^2} - {n^2}} \right)}} + C,
Now again simplifying the expression we get,
02πsin(mx)cos(nx)dx=[(mn)cos((m+n)(2π))+(m+n)cos((m+n)(2π))2(m2n2)]\Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right)}}{{2\left( {{m^2} - {n^2}} \right)}}} \right] +2m2(m2n2)+C + \dfrac{{2m}}{{2\left( {{m^2} - {n^2}} \right)}} + C,
Now by adding as the denominators are equal, we get,
02πsin(mx)cos(nx)dx=[(mn)cos((m+n)(2π))+(m+n)cos((m+n)(2π))+2m2(m2n2)]+C\Rightarrow \int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} = - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + 2m}}{{2\left( {{m^2} - {n^2}} \right)}}} \right] + C
So, the integral value is [(mn)cos((m+n)(2π))+(m+n)cos((m+n)(2π))+2m2(m2n2)] - \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + 2m}}{{2\left( {{m^2} - {n^2}} \right)}}} \right].

\therefore The integral value of the given function 02πsin(mx)cos(nx)dx\int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} will be equal to
[(mn)cos((m+n)(2π))+(m+n)cos((m+n)(2π))+2m2(m2n2)]- \left[ {\dfrac{{\left( {m - n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + \left( {m + n} \right)\cos \left( {\left( {m + n} \right)\left( {2\pi } \right)} \right) + 2m}}{{2\left( {{m^2} - {n^2}} \right)}}} \right].

Note: An indefinite is an integral that does not contain the upper and lower limit. Indefinite integral is also known as anti-derivative or Prime integral. Indefinite integral of a function f is generally a differentiable function F whose derivative is equal to the original function f. It is represented as,
f(x)dx=F(x)+C\int {f\left( x \right)dx} = F\left( x \right) + C,
Some of the important formulas that we use while solving integration problems are given below:
dx=x+c\int {dx = x + c} ,
adx=ax+c\int {adx = ax + c} ,
xndx=xn+1n+1+c\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c,
1xdx=lnx+c\int {\dfrac{1}{x}dx} = \ln x + c,
exdx=ex+c\int {{e^x}dx = {e^x} + c} ,
axdx=axlna+c\int {{a^x}dx = \dfrac{{{a^x}}}{{\ln a}} + c} ,
sinxdx=cosx+c\int {\sin xdx = - \cos x + c} ,
cosxdx=sinx+c\int {\cos xdx = \sin x + c} ,
sec2xdx=tanx+c\int {{{\sec }^2}xdx = \tan x + c} ,
csc2xdx=cotx+C\int {{{\csc }^2}xdx = - \cot x + C} ,
secxtanxdx=secx+C\int {\sec x\tan xdx = \sec x + C} ,
cscxcotxdx=cscx+C\int {\csc x\cot xdx = - \csc x + C} ,
11x2dx=sin1x+c\int {\dfrac{1}{{\sqrt {1 - {x^2}} }}dx = {{\sin }^{ - 1}}x + c} ,
11+x2dx=tan1x+c\int {\dfrac{1}{{1 + {x^2}}}dx = {{\tan }^{ - 1}}x + c} .