Question
Question: How do you integrate \(\int\limits_0^{2\pi } {\sin \left( {mx} \right)\cos \left( {nx} \right)dx} \)...
How do you integrate 0∫2πsin(mx)cos(nx)dx, m,n∈Z?
Solution
In this question we have to find the integral value of the given function, we will find by using the trigonometric identity, sin(a+b)+sin(a−b)=2sinacosb, then we will distribute the integration and by using the integration formula ∫sinxdx=−cosx, then we will apply the intervals , then we will get the required result.
Complete step by step solution:
Given function is 0∫2πsin(mx)cos(nx)dx,
We know that sin(a+b)+sin(a−b)=2sinacosb, using the formula we get,
⇒sin(mx)cos(nx)=21[sin(mx+nx)+sin(mx−nx)],
Now substituting the value, we get,
⇒0∫2πsin(mx)cos(nx)dx=0∫2π21[sin(mx+nx)+sin(mx−nx)]dx,
Now taking out the constant we get,
⇒0∫2πsin(mx)cos(nx)dx=210∫2π[sin(m+n)x+sin(m−n)x]dx,
Now distribute the integration to all terms, we get,
⇒0∫2πsin(mx)cos(nx)dx=210∫2πsin(m+n)xdx+210∫2πsin(m−n)xdx,
Now applying the integration we get,
⇒0∫2πsin(mx)cos(nx)dx=−21[m+ncos(m+n)x]02π−21[m−ncos(m−n)x]02π+C,
Now applying intervals we get,
⇒0∫2πsin(mx)cos(nx)dx=−21[m+ncos(m+n)(2π)−m+ncos(m+n)0]−21[m−ncos(m−n)(2π)−m−ncos(m−n)0]+CNow simplifying we get,
⇒0∫2πsin(mx)cos(nx)dx=−21[m+ncos((m+n)(2π))−m+ncos0]−21[m−ncos((m−n)(2π))−m−ncos0]+C
Now we know that cos0=1, we get,
⇒0∫2πsin(mx)cos(nx)dx=−21[m+ncos((m+n)(2π))−m+n1]−21[m−ncos((m−n)(2π))−m−n1]+C
Now distributing the constant, we get,
⇒0∫2πsin(mx)cos(nx)dx=−[2(m+n)cos((m+n)(2π))]+2(m+n)1−[2(m−n)cos((m−n)(2π))]+2(m−n)1C
Now simplifying we get,
⇒0∫2πsin(mx)cos(nx)dx=−[2(m+n)cos((m+n)(2π))]+−[2(m−n)cos((m−n)(2π))]+2(m+n)1+2(m−n)1C
Now taking L.C.M, we get,
⇒0∫2πsin(mx)cos(nx)dx=−[2(m+n)(m−n)(m−n)cos((m+n)(2π))+2(m+n)(m−n)(m+n)cos((m+n)(2π))] +4(m+n)(m−n)2(m−n)+2(m+n)+C,
Now simplifying we get,
⇒0∫2πsin(mx)cos(nx)dx=−[2(m2−n2)(m−n)cos((m+n)(2π))+(m+n)cos((m+n)(2π))] +4(m2−n2)2m−2n+2m+2n+C,
Now simplifying we get,
⇒0∫2πsin(mx)cos(nx)dx=−[2(m2−n2)(m−n)cos((m+n)(2π))+(m+n)cos((m+n)(2π))]
+4(m2−n2)4m+C,
Now further simplification we get,
⇒0∫2πsin(mx)cos(nx)dx=−[2(m2−n2)(m−n)cos((m+n)(2π))+(m+n)cos((m+n)(2π))] +(m2−n2)m+C,
Now again simplifying the expression we get,
⇒0∫2πsin(mx)cos(nx)dx=−[2(m2−n2)(m−n)cos((m+n)(2π))+(m+n)cos((m+n)(2π))] +2(m2−n2)2m+C,
Now by adding as the denominators are equal, we get,
⇒0∫2πsin(mx)cos(nx)dx=−[2(m2−n2)(m−n)cos((m+n)(2π))+(m+n)cos((m+n)(2π))+2m]+C
So, the integral value is −[2(m2−n2)(m−n)cos((m+n)(2π))+(m+n)cos((m+n)(2π))+2m].
∴ The integral value of the given function 0∫2πsin(mx)cos(nx)dx will be equal to
−[2(m2−n2)(m−n)cos((m+n)(2π))+(m+n)cos((m+n)(2π))+2m].
Note: An indefinite is an integral that does not contain the upper and lower limit. Indefinite integral is also known as anti-derivative or Prime integral. Indefinite integral of a function f is generally a differentiable function F whose derivative is equal to the original function f. It is represented as,
∫f(x)dx=F(x)+C,
Some of the important formulas that we use while solving integration problems are given below:
∫dx=x+c,
∫adx=ax+c,
∫xndx=n+1xn+1+c,
∫x1dx=lnx+c,
∫exdx=ex+c,
∫axdx=lnaax+c,
∫sinxdx=−cosx+c,
∫cosxdx=sinx+c,
∫sec2xdx=tanx+c,
∫csc2xdx=−cotx+C,
∫secxtanxdx=secx+C,
∫cscxcotxdx=−cscx+C,
∫1−x21dx=sin−1x+c,
∫1+x21dx=tan−1x+c.