Solveeit Logo

Question

Question: How do you integrate : \( \int \dfrac{x}{{\sqrt {{x^2} + 9} }}dx \) ?...

How do you integrate :
xx2+9dx\int \dfrac{x}{{\sqrt {{x^2} + 9} }}dx ?

Explanation

Solution

Hint : To solve this question, first we will assume any of the set of variables or constant be another variable to get the expression easier. And conclude until the non-operational state is not achieved. And finally substitute the assumed value.

Complete step-by-step answer :
The given expression:
xx2+9dx\int \dfrac{x}{{\sqrt {{x^2} + 9} }}dx
We can integrate this expression by the substitution-
Let, x2+9=t{x^2} + 9 = t .
Now, differentiate the above assumed equation:
dx2dx+ddx(9)=dtdx\Rightarrow \dfrac{{d{x^2}}}{{dx}} + \dfrac{d}{{dx}}(9) = \dfrac{{dt}}{{dx}}
2x+0=dtdx\Rightarrow 2x + 0 = \dfrac{{dt}}{{dx}}
2x.dx=dt\Rightarrow 2x.dx = dt
x.dx=dt2\Rightarrow x.dx = \dfrac{{dt}}{2}
Now, use the above equation in the main expression:
xx2+9dx   \because \int \dfrac{x}{{\sqrt {{x^2} + 9} }}dx \;
put dt2\dfrac{{dt}}{2} instead of x.dxx.dx .
=dt21t =12t12dt =12t1212+C =t+C   = \int \dfrac{{dt}}{2}\dfrac{1}{{\sqrt t }} \\\ = \dfrac{1}{2}\int {t^{ - \dfrac{1}{2}}}dt \\\ = \dfrac{1}{2}\dfrac{{{t^{\dfrac{1}{2}}}}}{{\dfrac{1}{2}}} + C \\\ = \sqrt t + C \;
Now, substitute the actual value of tt :
=x2+9+C= \sqrt {{x^2} + 9} + C
So, the correct answer is “ =x2+9+C= \sqrt {{x^2} + 9} + C ”.

Note : Usually the method of integration by substitution is extremely useful when we make a substitution for a function whose derivative is also present in the integrand. Doing so, the function simplifies and then the basic formulas of integration can be used to integrate the function.