Solveeit Logo

Question

Question: How do you integrate \[\int {\dfrac{{{x^3}}}{{\sqrt {1 - {x^2}} }}} \] using trigonometric substitut...

How do you integrate x31x2\int {\dfrac{{{x^3}}}{{\sqrt {1 - {x^2}} }}} using trigonometric substitution?

Explanation

Solution

Here in this question, we have to integrate the given function. Substituting the terms by the trigonometry ratios and using or applying the trigonometry’s standard identities to the given function and then integrating the function. Hence, we obtain the required solution for the given question.

Complete step-by-step solution:
Consider the given function
x31x2dx\int {\dfrac{{{x^3}}}{{\sqrt {1 - {x^2}} }}} dx
Integrating the function by trigonometric substitution. Substitute x=sin(u)x = \sin (u), so dx=cos(u)dudx = \cos (u)du
On substituting x and dx
sin3(u)1sin2(u)cos(u)du\Rightarrow \int {\dfrac{{{{\sin }^3}(u)}}{{\sqrt {1 - {{\sin }^2}(u)} }}} \cos (u)du----------(1)
By the standard trigonometry identity sin2(u)+cos2(u)=1{\sin ^2}(u) + {\cos ^2}(u) = 1
This is written as cos2(u)=1sin2(u){\cos ^2}(u) = 1 - {\sin ^2}(u)-----------(2)
Substituting the equation (2) in the equation (1), the function obtained as
sin3(u)cos2(u)cos(u)du\Rightarrow \int {\dfrac{{{{\sin }^3}(u)}}{{\sqrt {{{\cos }^2}(u)} }}} \cos (u)du
The square root and the square is inverse to each other. Therefore, the square and square root will get cancels. The function is
sin3(u)cos(u)cos(u)du\Rightarrow \int {\dfrac{{{{\sin }^3}(u)}}{{\cos (u)}}} \cos (u)du
The cos (u) presents in the denominator and the denominator will get cancel. The function is written as
sin3(u)du\Rightarrow \int {{{\sin }^3}(u)} du
The sin3(u){\sin ^3}(u)trigonometry ratio can be written as sin2(u)×sin(u){\sin ^2}(u) \times \sin (u). So the function is rewritten as
sin2(u)×sin(u)du\Rightarrow \int {{{\sin }^2}(u) \times \sin (u)} du
By the standard trigonometry identity sin2(u)+cos2(u)=1{\sin ^2}(u) + {\cos ^2}(u) = 1
This is written as sin2(u)=1cos2(u){\sin ^2}(u) = 1 - {\cos ^2}(u)
(1cos2(u))sin(u)du\Rightarrow \int {(1 - {{\cos }^2}(u))\sin (u)} du
Substitute t=cos(u)t = \cos (u), so dt=sin(u)dudt = - \sin (u)du
On substituting
(1t2)(dt)\Rightarrow \int {(1 - {t^2})( - dt)}
(1t2)dt\Rightarrow - \int {(1 - {t^2})dt}
Applying the integration to each term we get
dt+t2dt\Rightarrow - \int {dt} + \int {{t^2}dt}
By the standard formulas on integration, we have dt=t\int {dt} = t and t2dt=t33 \Rightarrow \int {{t^2}dt} = \dfrac{{{t^3}}}{3}. On substituting these integration formulas, we get
t+t33+c\Rightarrow - t + \dfrac{{{t^3}}}{3} + c
Substitute t=cos(u)t = \cos (u)
cos(u)+cos3(u)3+c\Rightarrow - \cos (u) + \dfrac{{{{\cos }^3}(u)}}{3} + c
As we know that x=sin(u)x = \sin (u) so the value of u is given by u=sin1(x)u = {\sin ^{ - 1}}(x). On substituting we get
cos(sin1(x))+cos3(sin1(x))3+c\Rightarrow - \cos ({\sin ^{ - 1}}(x)) + \dfrac{{{{\cos }^3}({{\sin }^{ - 1}}(x))}}{3} + c
This is rewritten as
cos(sin1(x))3(3cos2(sin1(x))+c\Rightarrow - \dfrac{{\cos ({{\sin }^{ - 1}}(x))}}{3}\left( {3 - {{\cos }^2}({{\sin }^{ - 1}}(x)} \right) + c
As we know that cos(sin1(x))=1x2\cos ({\sin ^{ - 1}}(x)) = \sqrt {1 - {x^2}} , so the above function is written as
1x23(3(1x2)2)+c\Rightarrow - \dfrac{{\sqrt {1 - {x^2}} }}{3}\left( {3 - {{\left( {\sqrt {1 - {x^2}} } \right)}^2}} \right) + c
The square root and the square are inverse to each other. Therefore, the square and square root will get canceled. The function is
1x23(31+x2)+c\Rightarrow - \dfrac{{\sqrt {1 - {x^2}} }}{3}\left( {3 - 1 + {x^2}} \right) + c
On simplification we get
1x23(2+x2)+c\Rightarrow - \dfrac{{\sqrt {1 - {x^2}} }}{3}\left( {2 + {x^2}} \right) + c
Hence we have integrated the given function and obtained the solution for the given question.

Note: By simplifying the question using the substitution we can integrate the given function easily. If we apply integration directly it may be complicated to solve further. So simplification is needed. We must know the differentiation formulas. The trigonometry standard identities are applied to solve this problem.