Question
Question: How do you integrate \( \int \dfrac{{{x^2}}}{{\sqrt {{x^2} - 4} }}dx \) using trigonometric substitu...
How do you integrate ∫x2−4x2dx using trigonometric substitution?
Solution
Hint : To solve this question, first we will assume any of the set of variables or constant be another variable to get the expression easier. And conclude until the non-operational state is not achieved. And finally substitute the assumed value.
Complete step-by-step answer :
Let, I=∫x2−4x2dx .
Now, we can substitute:
x=2.secy
Differentiate the above equation,
⇒dydx=2secy.tany ⇒dx=2secy.tany.dy
Put the value of x in I :
∴I=∫4sec2y−44sec2y.2secy.tanydy =∫2tany4sec2y.2secy.tanydy =4∫sec3ydy =4∫secy.sec2ydy =4∫tan2y+1.sec2ydy
Now, we substitute: tany=t ;
Differentiate the above substitution:
⇒sec2ydy=dt
∴I=4∫t2+1dt =42tt2+1+21ln∣t+t2+1∣ =2tany.secy+ln∣tany+secy∣
(∵t=tany)
Now, returning to:
secy=2x , so that: tany=4x2−1
SO, we have now:
∴I=22x.2x2−4+ln∣2x+2x2−4∣ ⇒I=2x.x2−4+2ln∣2x+2x2−4∣+C
,or,
I=2xx2−4+2ln∣x+x2−4∣+c , c=C−2ln2
However, the integral can easily be dealt with without using the substitution as follows:
I = \int \dfrac{{{x^2}}}{{\sqrt {{x^2} - 4} }}dx \\\
= \int \\{ \dfrac{{({x^2} - 4) + 4}}{{\sqrt {{x^2} - 4} }}dx\, \\\
= \int \\{ \dfrac{{({x^2} - 4)}}{{\sqrt {{x^2} - 4} }} + \dfrac{4}{{\sqrt {{x^2} - 4} }}\\} dx \\\
= \int \sqrt {{x^2} - 4} dx + 4\int \dfrac{1}{{\sqrt {{x^2} - 4} }}dx \\\
= \\{ \dfrac{x}{2}\sqrt {{x^2} - 4} - \dfrac{4}{2}\ln |x + \sqrt {{x^2} - 4} |\\} + 4\ln |x + \sqrt {{x^2} - 4} | \;
∴I=2xx2−4+2ln∣x+x2−4∣+C1
So, the correct answer is “ 2xx2−4+2ln∣x+x2−4∣+C1 ”.
Note : Usually the method of integration by substitution is extremely useful when we make a substitution for a function whose derivative is also present in the integrand. Doing so, the function simplifies and then the basic formulas of integration can be used to integrate the function.