Solveeit Logo

Question

Question: How do you integrate \(\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} dx\) by trigonometric substi...

How do you integrate x2a2x4dx\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} dx by trigonometric substitution?

Explanation

Solution

Here we are asked to find the value of the given integral by trigonometric substitution. Trigonometric substitution is nothing but substituting the variable by any expression which will help us to make the process of finding the integral easy. Also, the integrals are classified into two types, definite integral and indefinite integral: a definite integral contains upper and lower limits whereas an indefinite integral does not contain upper and lower limits; here, we are given an indefinite integral.
Formula to be used:
ddxsecx=secxtanx\dfrac{d}{{dx}}\sec x = \sec x\tan x
sec2x1=tanx\sqrt {{{\sec }^2}x - 1} = \tan x
tant=sintcost\tan t = \dfrac{{\sin t}}{{\cos t}}
sect=1cost\sec t = \dfrac{1}{{\cos t}}
ddt(sinx)=cosx\dfrac{d}{{dt}}\left( {\sin x} \right) = \cos x
xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}}
sint=1cos2t\sin t = \sqrt {1 - {{\cos }^2}t}

Complete answer:
Let us consider x2a2x4\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}
We shall substitute x=asectx = a\sec t
Now, we need to differentiate x=asectx = a\sec twith respect to xx
Thus, we have dx=asecttantdtdx = a\sec t\tan tdt (Here we have applied the formula ddxsecx=secxtanx\dfrac{d}{{dx}}\sec x = \sec x\tan x)
Now, we shall substitute x=asectx = a\sec tin x2a2x4\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}}
Thus, we have x2a2x4=(asect)2a2(asect)4\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}} = \dfrac{{\sqrt {{{\left( {a\sec t} \right)}^2} - {a^2}} }}{{{{\left( {a\sec t} \right)}^4}}}
=a2sec2ta2a4sec4t= \dfrac{{\sqrt {{a^2}{{\sec }^2}t - {a^2}} }}{{{a^4}{{\sec }^4}t}}
=asec2t1a4sec4t= \dfrac{{a\sqrt {{{\sec }^2}t - 1} }}{{{a^4}{{\sec }^4}t}}
=atanta4sec4t= \dfrac{{a\tan t}}{{{a^4}{{\sec }^4}t}} (Here we have applied sec2x1=tanx\sqrt {{{\sec }^2}x - 1} = \tan x)
=tanta3sec4t= \dfrac{{\tan t}}{{{a^3}{{\sec }^4}t}}
=sintcosta3(1cos)4= \dfrac{{\dfrac{{\sin t}}{{\cos t}}}}{{{a^3}{{\left( {\dfrac{1}{{\cos }}} \right)}^4}}} (Here we have applied tant=sintcost\tan t = \dfrac{{\sin t}}{{\cos t}} and sect=1cost\sec t = \dfrac{1}{{\cos t}} )
=1a3sintcostcos4t= \dfrac{1}{{{a^3}}}\dfrac{{\sin t}}{{\cos t}}{\cos ^4}t
=1a3sintcos3t= \dfrac{1}{{{a^3}}}\sin t{\cos ^3}t
Now, we shall substitute the above equation in x2a2x4dx\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} dx
x2a2x4dx\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} dx =sintcos3ta3asecttantdt= \int {\dfrac{{\sin t{{\cos }^3}t}}{{{a^3}}}a\sec t \cdot \tan tdt}
(Here we have applied dx=asecttantdtdx = a\sec t\tan tdt)
=1a2sintcos3tsecttantdt= \dfrac{1}{{{a^2}}}\int {\sin t{{\cos }^3}t\sec t \cdot \tan tdt}
=1a2sintcos3t1costsintcostdt= \dfrac{1}{{{a^2}}}\int {\sin t{{\cos }^3}t\dfrac{1}{{\cos t}}\dfrac{{\sin t}}{{\cos t}}dt}
(Here we have applied tant=sintcost\tan t = \dfrac{{\sin t}}{{\cos t}} and sect=1cost\sec t = \dfrac{1}{{\cos t}} )
=1a2sin2tcostdt= \dfrac{1}{{{a^2}}}\int {{{\sin }^2}t} \cos tdt …………….(1)\left( 1 \right)
Now, we shall assume y=sinty = \sin t and we need to differentiate it with respect to yy
Thus, dy=costdtdy = \cos tdt (We have applied ddt(sinx)=cosx\dfrac{d}{{dt}}\left( {\sin x} \right) = \cos x)
We need to apply y=sinty = \sin tand dy=costdtdy = \cos tdt in the equation (1)\left( 1 \right)
Thus, we have x2a2x4\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} =1a2y2dy = \dfrac{1}{{{a^2}}}\int {{y^2}} dy (We shall apply the formula xndx=xn+1n+1\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} to integrate )
=1a2y2+12+1= \dfrac{1}{{{a^2}}}\dfrac{{{y^{2 + 1}}}}{{2 + 1}}
=1a2y33= \dfrac{1}{{{a^2}}}\dfrac{{{y^3}}}{3}
Since we have assumed y=sinty = \sin t, we shall apply it in the above.
x2a2x4\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} =1a2(sint)33 = \dfrac{1}{{{a^2}}}\dfrac{{{{\left( {\sin t} \right)}^3}}}{3} ……………..(2)\left( 2 \right)
Earlier, we substituted x=asectx = a\sec tand dx=asecttantdtdx = a\sec t\tan tdt.
For our convenience, we need to change as follows.
x=asectx = a\sec t
sect=xa\sec t = \dfrac{x}{a}
1cost=xa\Rightarrow \dfrac{1}{{\cos t}} = \dfrac{x}{a} (Here we have applied sect=1cost\sec t = \dfrac{1}{{\cos t}} )
cost=ax\Rightarrow \cos t = \dfrac{a}{x}
We know that sint=1cos2t\sin t = \sqrt {1 - {{\cos }^2}t}
Thus, sint=1(ax)2\sin t = \sqrt {1 - {{\left( {\dfrac{a}{x}} \right)}^2}}
sint=1a2x2\Rightarrow \sin t = \sqrt {1 - \dfrac{{{a^2}}}{{{x^2}}}}
sint=x2a2x2\Rightarrow \sin t = \sqrt {\dfrac{{{x^2} - {a^2}}}{{{x^2}}}}
sint=x2a2x\Rightarrow \sin t = \dfrac{{\sqrt {{x^2} - {a^2}} }}{x}
Now, we shall substitute sint=x2a2x\sin t = \dfrac{{\sqrt {{x^2} - {a^2}} }}{x} in the equation (2)\left( 2 \right)
Thus, we have x2a2x4\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} =1a2(x2a2x)33 = \dfrac{1}{{{a^2}}}\dfrac{{{{\left( {\dfrac{{\sqrt {{x^2} - {a^2}} }}{x}} \right)}^3}}}{3}
=13a2x3(x2a2)32+C= \dfrac{1}{{3{a^2}{x^3}}}{\left( {{x^2} - {a^2}} \right)^{\dfrac{3}{2}}} + C (Here CC is the constant of integration)
=(x2a2)323a2x3+C= \dfrac{{{{\left( {{x^2} - {a^2}} \right)}^{\dfrac{3}{2}}}}}{{3{a^2}{x^3}}} + C
Therefore, x2a2x4\int {\dfrac{{\sqrt {{x^2} - {a^2}} }}{{{x^4}}}} =(x2a2)323a2x3+C = \dfrac{{{{\left( {{x^2} - {a^2}} \right)}^{\dfrac{3}{2}}}}}{{3{a^2}{x^3}}} + C

Note:
The steps to be followed in trigonometric substitution are as follows.
a) We shall make sure that we cannot use a simpler method to solve the integral and we need to identify that the given is a trigonometric substitution problem.
b) Then we need to decide which substitution to use. We can use sine substitution, tangent substitution, or secant substitution. In this process, we can get the values of x and dx.
c) Then we need to substitute the obtained values into the integral. We shall simplify the integral using any method.
d) At last, we need to back-substitute the integrated value back in terms of x.