Solveeit Logo

Question

Question: How do you integrate \(\int \dfrac{{\sqrt {{x^2} - 25} }}{x}dx\) using trigonometric substitution?...

How do you integrate x225xdx\int \dfrac{{\sqrt {{x^2} - 25} }}{x}dx using trigonometric substitution?

Explanation

Solution

Hint : To solve this question, first we will assume any of the set of variables or constant be another variable to get the expression easier. And conclude until the non-operational state is not achieved. And finally substitute the assumed value. Here we substitute x= secu by looking at the nature of expression given.

Complete step by step solution:
Let us suppose that, I=x225xdxI = \int \dfrac{{\sqrt {{x^2} - 25} }}{x}dx , and
let x=5secux = 5\sec u .
Differentiate x=5secux = 5\sec u :
dx=5secutanudu\Rightarrow dx = 5\sec u\tan u du
Now,
I=25sec2u255secu.5secutanudu =5tanu.tanudu =5tan2udu =5(sec2u1)du =5(tanuu)   \therefore I = \int \dfrac{{\sqrt {25{{\sec }^2}u - 25} }}{{5\sec u}}.5\sec u\tan udu \\\ = \int 5\tan u.\tan udu \\\ = 5\int {\tan ^2}udu \\\ = 5\int ({\sec ^2}u - 1)du \\\ = 5(\tan u - u) \;
Here,
5tanu=x2255\tan u = \sqrt {{x^2} - 25} and
x=5secu u=arcsec(x5)   x = 5\sec u \\\ \Rightarrow u = arc\,\sec (\dfrac{x}{5}) \;
Hence,
I=x2255arcsec(x5)+C\Rightarrow I = \sqrt {{x^2} - 25} - 5arc\,\sec (\dfrac{x}{5}) + C .
So, the correct answer is “I=x2255arcsec(x5)+C I = \sqrt {{x^2} - 25} - 5arc\,\sec (\dfrac{x}{5}) + C ”.

Note : Usually the method of integration by substitution is extremely useful when we make a substitution for a function whose derivative is also present in the integrand. Doing so, the function simplifies and then the basic formulas of integration can be used to integrate the function.