Solveeit Logo

Question

Question: How do you integrate \[\int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}} \] using partial fracti...

How do you integrate 3x22x+5(x2+1)2\int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}} using partial fractions?

Explanation

Solution

We check if the degree of the numerator is strictly less than the degree of the denominator to be able to use partial fractions here. Then we use the general formula for converting the given fraction into a partial fraction. Substitute the partial fraction under the integral and solve the separate integrals.
Partial fractions is a method of dividing a single fraction into a sum of two or more fractions such that the integration becomes easier. The degree of the numerator should always be less than the degree of the denominator here. When given a fraction of the kind where the denominator is like (ax2+bx+c)k{(a{x^2} + bx + c)^k}then we write the fraction equal to the sum A1x+B1ax2+bx+c+A2x+B2(ax2+bx+c)2+.....+Akx+Bk(ax2+bx+c)k\dfrac{{{A_1}x + {B_1}}}{{a{x^2} + bx + c}} + \dfrac{{{A_2}x + {B_2}}}{{{{\left( {a{x^2} + bx + c} \right)}^2}}} + ..... + \dfrac{{{A_k}x + {B_k}}}{{{{\left( {a{x^2} + bx + c} \right)}^k}}}
11+x2dx=tan1x\int {\dfrac{1}{{1 + {x^2}}}dx} = {\tan ^{ - 1}}x

Complete step-by-step answer:
We have to integrate 3x22x+5(x2+1)2\int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}} using partial fractions.
Since the fraction has the degree of the denominator (4) less than the degree of the numerator (2), we can apply a method of partial fractions.
Also, the denominator of the fraction 3x22x+5(x2+1)2\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}is of the type (ax2+bx+c)k{(a{x^2} + bx + c)^k}, so we use the general formula given in hint to convert in to partial fraction.
We write
3x22x+5(x2+1)2=Ax+B(x2+1)+Cx+D(x2+1)2\Rightarrow \dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}} = \dfrac{{Ax + B}}{{({x^2} + 1)}} + \dfrac{{Cx + D}}{{{{({x^2} + 1)}^2}}} … (1)
Take LCM in right hand side of the equation
3x22x+5(x2+1)2=(Ax+B)(x2+1)+Cx+D(x2+1)2\Rightarrow \dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}} = \dfrac{{(Ax + B)({x^2} + 1) + Cx + D}}{{{{({x^2} + 1)}^2}}}
Cancel same denominator from both sides of the equation
3x22x+5=(Ax+B)(x2+1)+Cx+D\Rightarrow 3{x^2} - 2x + 5 = (Ax + B)({x^2} + 1) + Cx + D
Open the brackets on right hand side of the equation and multiply the terms
3x22x+5=Ax3+Bx2+Ax+B+Cx+D\Rightarrow 3{x^2} - 2x + 5 = A{x^3} + B{x^2} + Ax + B + Cx + D
Group together the coefficients with same variables on right hand side of the equation
3x22x+5=Ax3+Bx2+(A+C)x+(B+D)\Rightarrow 3{x^2} - 2x + 5 = A{x^3} + B{x^2} + (A + C)x + (B + D) … (2)
We know that two polynomials are equal if the coefficients are equal for the same variables.
Equate the coefficients on both sides of the equation (2)
A=0;B=3;A+C=2;B+D=5\Rightarrow A = 0;B = 3;A + C = - 2;B + D = 5
Substitute the value of A and B in to calculate values of C and D
A=0;B=3;C=2;D=2\Rightarrow A = 0;B = 3;C = - 2;D = 2
Substitute the values of A, B, C and D in equation (1)
3x22x+5(x2+1)2=0.x+3(x2+1)+2x+2(x2+1)2\Rightarrow \dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}} = \dfrac{{0.x + 3}}{{({x^2} + 1)}} + \dfrac{{ - 2x + 2}}{{{{({x^2} + 1)}^2}}}
3x22x+5(x2+1)2=3(x2+1)+2x+2(x2+1)2\Rightarrow \dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}} = \dfrac{3}{{({x^2} + 1)}} + \dfrac{{ - 2x + 2}}{{{{({x^2} + 1)}^2}}}
Integrate both sides of the equation with respect to x
3x22x+5(x2+1)2dx=3(x2+1)dx+2x+2(x2+1)2dx\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = \int {\dfrac{3}{{({x^2} + 1)}}dx} + \int {\dfrac{{ - 2x + 2}}{{{{({x^2} + 1)}^2}}}dx}
We know that we can bring out constant from the integration
3x22x+5(x2+1)2dx=31(x2+1)dx+2x+2(x2+1)2dx\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3\int {\dfrac{1}{{({x^2} + 1)}}dx} + \int {\dfrac{{ - 2x + 2}}{{{{({x^2} + 1)}^2}}}dx}
We know that 11+x2dx=tan1x+C\int {\dfrac{1}{{1 + {x^2}}}dx} = {\tan ^{ - 1}}x + C because ddxtan1x=11+x2\dfrac{d}{{dx}}{\tan ^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}
Substitute the value in right hand side of the equation
3x22x+5(x2+1)2dx=3tan1x+C+2x+2(x2+1)2dx\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x + C + \int {\dfrac{{ - 2x + 2}}{{{{({x^2} + 1)}^2}}}dx}
We break the remaining integral into 2 parts
3x22x+5(x2+1)2dx=3tan1x+C2x(x2+1)2dx+2(x2+1)2dx\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x + C - \int {\dfrac{{2x}}{{{{({x^2} + 1)}^2}}}dx} + \int {\dfrac{2}{{{{({x^2} + 1)}^2}}}dx}
For second integral let us substitute x2+1=t{x^2} + 1 = t
Differentiating both sides we get 2xdx=dt2xdx = dt
3x22x+5(x2+1)2dx=3tan1x+C1t2dt+2(x2+1)2dx\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x + C - \int {\dfrac{1}{{{t^2}}}dt} + \int {\dfrac{2}{{{{({x^2} + 1)}^2}}}dx}
3x22x+5(x2+1)2dx=3tan1x+Ct2dt+2(x2+1)2dx\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x + C - \int {{t^{ - 2}}dt} + \int {\dfrac{2}{{{{({x^2} + 1)}^2}}}dx}
Use general method of integration i.e. xndx=xn+1n+1+C\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + C
3x22x+5(x2+1)2dx=3tan1x(t2+12+1)+C+2(x2+1)2dx\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x - \left( {\dfrac{{{t^{ - 2 + 1}}}}{{ - 2 + 1}}} \right) + C + \int {\dfrac{2}{{{{({x^2} + 1)}^2}}}dx}
3x22x+5(x2+1)2dx=3tan1x(t11)+C+2(x2+1)2dx\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x - \left( {\dfrac{{{t^{ - 1}}}}{{ - 1}}} \right) + C + \int {\dfrac{2}{{{{({x^2} + 1)}^2}}}dx}
3x22x+5(x2+1)2dx=3tan1x+1t+C+2(x2+1)2dx\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x + \dfrac{1}{t} + C + \int {\dfrac{2}{{{{({x^2} + 1)}^2}}}dx}
Substitute value of x2+1=t{x^2} + 1 = t
3x22x+5(x2+1)2dx=3tan1x+1x2+1+C+2(x2+1)2dx\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x + \dfrac{1}{{{x^2} + 1}} + C + \int {\dfrac{2}{{{{({x^2} + 1)}^2}}}dx}
Now for the third integral, we substitute x=tanyx = \tan yi.e. y=tan1xy = {\tan ^{ - 1}}x
Differentiating both sides we get dx=sec2ydydx = {\sec ^2}ydy
3x22x+5(x2+1)2dx=3tan1x+1x2+1+C+2sec2y(tan2y+1)2dy\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x + \dfrac{1}{{{x^2} + 1}} + C + 2\int {\dfrac{{{{\sec }^2}y}}{{{{({{\tan }^2}y + 1)}^2}}}dy}
We know that 1+tan2y=sec2y1 + {\tan ^2}y = {\sec ^2}y
3x22x+5(x2+1)2dx=3tan1x+1x2+1+C+2sec2y(sec2y)2dy\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x + \dfrac{1}{{{x^2} + 1}} + C + 2\int {\dfrac{{{{\sec }^2}y}}{{{{({{\sec }^2}y)}^2}}}dy}
Cancel same terms from numerator and denominator
3x22x+5(x2+1)2dx=3tan1x+1x2+1+C+21sec2ydy\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x + \dfrac{1}{{{x^2} + 1}} + C + 2\int {\dfrac{1}{{{{\sec }^2}y}}dy}
We know that 1secy=cosy\dfrac{1}{{\sec y}} = \cos y
3x22x+5(x2+1)2dx=3tan1x+1x2+1+C+2cos2ydy\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x + \dfrac{1}{{{x^2} + 1}} + C + 2\int {{{\cos }^2}ydy}
We know cos2y=12(cos2y+1){\cos ^2}y = \dfrac{1}{2}\left( {\cos 2y + 1} \right)
3x22x+5(x2+1)2dx=3tan1x+1x2+1+C+2×12(cos2y+1)dy\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x + \dfrac{1}{{{x^2} + 1}} + C + 2 \times \dfrac{1}{2}\int {\left( {\cos 2y + 1} \right)dy}
Substitute cosydy=siny\int {\cos ydy = - \sin y}
3x22x+5(x2+1)2dx=3tan1x+1x2+1+Csin2y2+y\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x + \dfrac{1}{{{x^2} + 1}} + C - \dfrac{{\sin 2y}}{2} + y
3x22x+5(x2+1)2dx=3tan1x+1x2+1+C2sinycosy+y\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x + \dfrac{1}{{{x^2} + 1}} + C - 2\sin y\cos y + y
When x=tanyx = \tan y, then the right angle triangle with angle y will give us value of siny=x1+x2;cosy=11+x2\sin y = \dfrac{x}{{\sqrt {1 + {x^2}} }};\cos y = \dfrac{1}{{\sqrt {1 + {x^2}} }}. Also put y=tan1xy = {\tan ^{ - 1}}x
3x22x+5(x2+1)2dx=3tan1x+1x2+12×(x1+x2×11+x2)+tan1x+C\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x + \dfrac{1}{{{x^2} + 1}} - 2 \times \left( {\dfrac{x}{{\sqrt {1 + {x^2}} }} \times \dfrac{1}{{\sqrt {1 + {x^2}} }}} \right) + {\tan ^{ - 1}}x + C
3x22x+5(x2+1)2dx=3tan1x+1x2+12x1+x2+tan1x+C\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 3{\tan ^{ - 1}}x + \dfrac{1}{{{x^2} + 1}} - \dfrac{{2x}}{{1 + {x^2}}} + {\tan ^{ - 1}}x + C
Add like values on right hand side
3x22x+5(x2+1)2dx=4tan1x+12xx2+1+C\Rightarrow \int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}dx} = 4{\tan ^{ - 1}}x + \dfrac{{1 - 2x}}{{{x^2} + 1}} + C

\therefore The value of the 3x22x+5(x2+1)2\int {\dfrac{{3{x^2} - 2x + 5}}{{{{({x^2} + 1)}^2}}}} using partial fractions is 4tan1x+12xx2+1+C4{\tan ^{ - 1}}x + \dfrac{{1 - 2x}}{{{x^2} + 1}} + C

Note:
Many students make the mistake of solving the last integral wrong as they use the same formula of inverse of tangent to write the value of integral for the last integral. Keep in mind the square of the denominator prevents us from using that direct formula. Also, solve integrals separated by partial fractions one by one to avoid confusion.