Solveeit Logo

Question

Question: How do you integrate \[\int{\dfrac{1}{x-\sqrt{9+{{x}^{2}}}}dx}\] using trigonometric substitution?...

How do you integrate 1x9+x2dx\int{\dfrac{1}{x-\sqrt{9+{{x}^{2}}}}dx} using trigonometric substitution?

Explanation

Solution

In the given question, we have been asked to integrate the following function. In order to solve the question, we integrate the numerical by following the trigonometric substitution method. After solving the integration and depending on the resultant integration we need to integrate further, we will substitute one of the trigonometric expressions to simplify the given integration further.

Complete step by step solution:
We have given,
1x9+x2dx\Rightarrow \int{\dfrac{1}{x-\sqrt{9+{{x}^{2}}}}dx}
Multiply the numerator and denominator of the given expression by the conjugate of the denominator, we get
1x9+x2×x+9+x2x+9+x2dx\Rightarrow \int{\dfrac{1}{x-\sqrt{9+{{x}^{2}}}}\times \dfrac{x+\sqrt{9+{{x}^{2}}}}{x+\sqrt{9+{{x}^{2}}}}dx}
As we know that, (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}
Simplifying the above expression, we get
x+9+x2x2(9+x2)dx\Rightarrow \int{\dfrac{x+\sqrt{9+{{x}^{2}}}}{{{x}^{2}}-\left( 9+{{x}^{2}} \right)}dx}
Simplifying this by taking out the constant part, we get
19(x+9+x2)dx\Rightarrow -\dfrac{1}{9}\int{\left( x+\sqrt{9+{{x}^{2}}} \right)dx}
19xdx199+x2dx\Rightarrow -\dfrac{1}{9}\int{xdx-\dfrac{1}{9}\int{\sqrt{9+{{x}^{2}}}dx}}
Integrating xdx\int{xdx}, we obtain
118x2199+x2dx\Rightarrow -\dfrac{1}{18}{{x}^{2}}-\dfrac{1}{9}\int{\sqrt{9+{{x}^{2}}}dx}
Now,
Let J = 9+x2dx\int{\sqrt{9+{{x}^{2}}}dx}.
Now substitute x=3tanθx=3\tan \theta
Thus,
x=3tanθx=3\tan \theta
dx=3sec2θdθdx=3{{\sec }^{2}}\theta d\theta
Substituting these values in the above expression, we get
J=9+x2dx=9+9tan2θ(sec2θdθ)=91+tan2θ(sec2θdθ)J=\int{\sqrt{9+{{x}^{2}}}dx}=\int{\sqrt{9+9{{\tan }^{2}}\theta }\left( {{\sec }^{2}}\theta d\theta \right)=}9\int{\sqrt{1+{{\tan }^{2}}\theta }\left( {{\sec }^{2}}\theta d\theta \right)}
As we know that, 1+tan2θ=sec2θ1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta
Applying this in the above expression, we get
J=9sec2θ(sec2θdθ)=9secθ(sec2θdθ)=9sec3θdθ\Rightarrow J=9\int{\sqrt{{{\sec }^{2}}\theta }\left( {{\sec }^{2}}\theta d\theta \right)}=9\int{\sec \theta }\left( {{\sec }^{2}}\theta d\theta \right)=9\int{{{\sec }^{3}}\theta }d\theta
J=9sec3θdθ\Rightarrow J=9\int{{{\sec }^{3}}\theta }d\theta
Now, solving the resultant integration by parts; i.e.
udv=uvvdu\int{udv=uv-\int{vdu}}
We have,
9sec3θdθ\Rightarrow 9\int{{{\sec }^{3}}\theta }d\theta
Let k = sec3θdθ\int{{{\sec }^{3}}\theta }d\theta
Here,
u=secθ then du=secθtanθdθ\Rightarrow u=\sec \theta \ then\ \Rightarrow du=\sec \theta \tan \theta d\theta
dv=sec2θdθ then v=tanθ\Rightarrow dv={{\sec }^{2}}\theta d\theta \ then\ \Rightarrow v=\tan \theta
Thus, putting these values in the by-parts formula of integration, we get
k=sec3θdθ=secθtanθsecθtan2θdθ\Rightarrow k=\int{{{\sec }^{3}}\theta }d\theta =\sec \theta \tan \theta -\int{\sec \theta {{\tan }^{2}}\theta d\theta }
Using the trigonometric rule i.e. tan2θ=sec2θ1{{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1,
secθtanθsecθ(sec2θ1)dθ=secθtanθsec3θdθ+secθdθ\Rightarrow \sec \theta \tan \theta -\int{\sec \theta \left( {{\sec }^{2}}\theta -1 \right)d\theta }=\sec \theta \tan \theta -\int{{{\sec }^{3}}\theta d\theta +}\int{\sec \theta d\theta }
Undo the substitution i.e. k = sec3θdθ\int{{{\sec }^{3}}\theta }d\theta in the above integral, we obtain
k=secθtanθk+secθdθ\Rightarrow k=\sec \theta \tan \theta -k+\int{\sec \theta d\theta }
Adding ‘k’ to both the sides of the equation, we get
2k=secθtanθ+secθdθ\Rightarrow 2k=\sec \theta \tan \theta +\int{\sec \theta d\theta }
Now integration of secθdθ=lnsecθ+tanθ\int{\sec \theta d\theta }=\ln \left| \sec \theta +\tan \theta \right|
Substitute in the above integral, we get
2k=secθtanθ+lnsecθ+tanθ\Rightarrow 2k=\sec \theta \tan \theta +\ln \left| \sec \theta +\tan \theta \right|
Now, solving for the value of ‘k’, we get
Divide both the sides of the expression by 2, we get
k=(secθtanθ+lnsecθ+tanθ)2\Rightarrow k=\dfrac{\left( \sec \theta \tan \theta +\ln \left| \sec \theta +\tan \theta \right| \right)}{2}
And we know that, k=sec3θdθk=\int{{{\sec }^{3}}\theta }d\theta
Therefore,
k=sec3θdθ=(secθtanθ+lnsecθ+tanθ)2\Rightarrow k=\int{{{\sec }^{3}}\theta d\theta =}\dfrac{\left( \sec \theta \tan \theta +\ln \left| \sec \theta +\tan \theta \right| \right)}{2}
Returning to J=9sec3θdθJ=9\int{{{\sec }^{3}}\theta }d\theta ,
Putting the value of sec3θdθ=(secθtanθ+lnsecθ+tanθ)2\int{{{\sec }^{3}}\theta d\theta =}\dfrac{\left( \sec \theta \tan \theta +\ln \left| \sec \theta +\tan \theta \right| \right)}{2} in J=9sec3θdθJ=9\int{{{\sec }^{3}}\theta }d\theta , we get
J=9sec3θdθ=9×(secθtanθ+lnsecθ+tanθ)2\Rightarrow J=9\int{{{\sec }^{3}}\theta }d\theta =9\times \dfrac{\left( \sec \theta \tan \theta +\ln \left| \sec \theta +\tan \theta \right| \right)}{2}
Simplifying the above expression, we get
J=92(secθtanθ+lnsecθ+tanθ)\Rightarrow J=\dfrac{9}{2}\left( \sec \theta \tan \theta +\ln \left| \sec \theta +\tan \theta \right| \right)
Writing the above expression in form of tanθ\tan \theta , we get
J=92(tan2θ+1(tanθ))+lntan2θ+1+tanθ\Rightarrow J=\dfrac{9}{2}\left( \sqrt{{{\tan }^{2}}\theta +1}\left( \tan \theta \right) \right)+\ln \left| \sqrt{{{\tan }^{2}}\theta +1}+\tan \theta \right|
Putting the value of tanθ=x3\tan \theta =\dfrac{x}{3}, we get
J=92(x29+1(x3)+lnx29+1+(x3))\Rightarrow J=\dfrac{9}{2}\left( \sqrt{\dfrac{{{x}^{2}}}{9}+1}\left( \dfrac{x}{3} \right)+\ln \left| \sqrt{\dfrac{{{x}^{2}}}{9}+1}+\left( \dfrac{x}{3} \right) \right| \right)
Simplifying the above expression, we get
J=92(19(x2+9)(x3)+ln19(x2+9)+(x3))\Rightarrow J=\dfrac{9}{2}\left( \sqrt{\dfrac{1}{9}\left( {{x}^{2}}+9 \right)}\left( \dfrac{x}{3} \right)+\ln \left| \sqrt{\dfrac{1}{9}\left( {{x}^{2}}+9 \right)}+\left( \dfrac{x}{3} \right) \right| \right)
Solving the above, we get
J=92(x9x2+9+ln13(x2+9+x))\Rightarrow J=\dfrac{9}{2}\left( \dfrac{x}{9}\sqrt{{{x}^{2}}+9}+\ln \left| \dfrac{1}{3}\left( \sqrt{{{x}^{2}}+9}+x \right) \right| \right)
Solving for the each part individually, we get
J=x2x2+9+92lnx2+9+x92ln(3)\Rightarrow J=\dfrac{x}{2}\sqrt{{{x}^{2}}+9}+\dfrac{9}{2}\ln \left| \sqrt{{{x}^{2}}+9}+x \right|-\dfrac{9}{2}\ln \left( 3 \right)
Here, 92ln(3)\dfrac{9}{2}\ln \left( 3 \right) is a constant part and in the integral we write ‘c’ for it,
Substituting the value of ‘J’ in the integration we have solved first, we obtain
I=118x2199+x2dx\Rightarrow I=-\dfrac{1}{18}{{x}^{2}}-\dfrac{1}{9}\int{\sqrt{9+{{x}^{2}}}dx}
I=118x219(x2x2+9+92lnx2+9+x92ln(3))\Rightarrow I=-\dfrac{1}{18}{{x}^{2}}-\dfrac{1}{9}\left( \dfrac{x}{2}\sqrt{{{x}^{2}}+9}+\dfrac{9}{2}\ln \left| \sqrt{{{x}^{2}}+9}+x \right|-\dfrac{9}{2}\ln \left( 3 \right) \right)
Simplifying the above expression, we get
I=118x2118x(x2+9)12lnx2+9+x+C\Rightarrow I=-\dfrac{1}{18}{{x}^{2}}-\dfrac{1}{18}x\left( \sqrt{{{x}^{2}}+9} \right)-\dfrac{1}{2}\ln \left| \sqrt{{{x}^{2}}+9}+x \right|+C

Therefore,
I=x2+xx2+9+9lnx2+9+x18+c\Rightarrow I=-\dfrac{{{x}^{2}}+x\sqrt{{{x}^{2}}+9}+9\ln \left| \sqrt{{{x}^{2}}+9}+x \right|}{18}+c
Hence, it is the required answer.

Note: Students need to remember that if there is root in the denominator then we need to multiply the numerator and denominator by the conjugate of the denominator to eliminate the root term. Integration by trigonometric substitution we need to substitute the given variable equals to any trigonometric function. You should always choose which trigonometric function is suitable for solving the particular type of question. We should do all the calculations carefully and explicitly to avoid making errors.