Solveeit Logo

Question

Question: How do you integrate \(\int{\dfrac{1}{{{x}^{4}}-16}dx}\) using partial fractions?...

How do you integrate 1x416dx\int{\dfrac{1}{{{x}^{4}}-16}dx} using partial fractions?

Explanation

Solution

To integrate the above integration, we are going to first of all factorize the denominator of the above fraction. The factorization can be done using the following algebraic property i.e. (a2b2)=(ab)(a+b)\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right). To integrate the above fraction, we are going to represent his integration in the following form: 1ax+b+1cx+d+ex+fgx2+h\dfrac{1}{ax+b}+\dfrac{1}{cx+d}+\dfrac{ex+f}{g{{x}^{2}}+h}.

Complete step by step answer:
In the above problem, we are asked to integrate the following using partial fraction:
1x416dx\int{\dfrac{1}{{{x}^{4}}-16}dx}
As you can see that the denominator of the above fraction is of the form (a2b2)=(ab)(a+b)\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right) so applying this identity in the above we get,
1(x2)2(4)2dx =1(x24)(x2+4)dx =1((x)2(2)2)(x2+4)dx \begin{aligned} & \int{\dfrac{1}{{{\left( {{x}^{2}} \right)}^{2}}-{{\left( 4 \right)}^{2}}}dx} \\\ & =\int{\dfrac{1}{\left( {{x}^{2}}-4 \right)\left( {{x}^{2}}+4 \right)}dx} \\\ & =\int{\dfrac{1}{\left( {{\left( x \right)}^{2}}-{{\left( 2 \right)}^{2}} \right)\left( {{x}^{2}}+4 \right)}dx} \\\ \end{aligned}
Now, we can use the above identity (a2b2)=(ab)(a+b)\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right) in (x2)2(2)2{{\left( {{x}^{2}} \right)}^{2}}-{{\left( 2 \right)}^{2}} then we get,
1(x2)(x+2)(x2+4)dx\int{\dfrac{1}{\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)}dx}
Using partial fractions, the above fraction is equal to:
Ax2+Bx+2+Cx+Dx2+4=1(x2)(x+2)(x2+4)\dfrac{A}{x-2}+\dfrac{B}{x+2}+\dfrac{Cx+D}{{{x}^{2}}+4}=\dfrac{1}{\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)}
Taking L.C.M of the denominator in the L.H.S of the above equation we get,
A(x+2)(x2+4)+B(x2)(x2+4)+(Cx+D)(x2)(x+2)(x2)(x+2)(x2+4)=1(x2)(x+2)(x2+4)\dfrac{A\left( x+2 \right)\left( {{x}^{2}}+4 \right)+B\left( x-2 \right)\left( {{x}^{2}}+4 \right)+\left( Cx+D \right)\left( x-2 \right)\left( x+2 \right)}{\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)}=\dfrac{1}{\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)}
Denominator in the L.H.S and R.H.S will be cancelled out and the above equation will look like:
A(x+2)(x2+4)+B(x2)(x2+4)+(Cx+D)(x2)(x+2)=1 A(x3+8+4x+2x2)+B(x382x2+4x)+(Cx+D)(x24)=1 A(x3+8+4x+2x2)+B(x382x2+4x)+(Cx34Cx+Dx24D)=1 (A+B+C)x3+(2A2B+D)x2+(4A+4B4C)x+8A8B4D=1+0.x3+0.x2+0.x \begin{aligned} & A\left( x+2 \right)\left( {{x}^{2}}+4 \right)+B\left( x-2 \right)\left( {{x}^{2}}+4 \right)+\left( Cx+D \right)\left( x-2 \right)\left( x+2 \right)=1 \\\ & \Rightarrow A\left( {{x}^{3}}+8+4x+2{{x}^{2}} \right)+B\left( {{x}^{3}}-8-2{{x}^{2}}+4x \right)+\left( Cx+D \right)\left( {{x}^{2}}-4 \right)=1 \\\ & \Rightarrow A\left( {{x}^{3}}+8+4x+2{{x}^{2}} \right)+B\left( {{x}^{3}}-8-2{{x}^{2}}+4x \right)+\left( C{{x}^{3}}-4Cx+D{{x}^{2}}-4D \right)=1 \\\ & \Rightarrow \left( A+B+C \right){{x}^{3}}+\left( 2A-2B+D \right){{x}^{2}}+\left( 4A+4B-4C \right)x+8A-8B-4D=1+0.{{x}^{3}}+0.{{x}^{2}}+0.x \\\ \end{aligned}
Comparing the coefficients of x3,x2,x{{x}^{3}},{{x}^{2}},x and constant on both the sides we get,
A+B+C=0......Eq.(1) 2A2B+D=0.......Eq.(2) 4A+4B4C=0........Eq.(3) 8A8B4D=1........Eq.(4) \begin{aligned} & A+B+C=0......Eq.(1) \\\ & 2A-2B+D=0.......Eq.(2) \\\ & 4A+4B-4C=0........Eq.(3) \\\ & 8A-8B-4D=1........Eq.(4) \\\ \end{aligned}
In eq. (3), taking 4 as common from L.H.S we get,
4(A+BC)=0 A+BC=0.......Eq.(5) \begin{aligned} & 4\left( A+B-C \right)=0 \\\ & \Rightarrow A+B-C=0.......Eq.(5) \\\ \end{aligned}
Adding eq. (1) and eq. (5) we get,
A+B+C=0 A+BC=02A+2B+0=0 \begin{aligned} & A+B+C=0 \\\ & \dfrac{A+B-C=0}{2A+2B+0=0} \\\ \end{aligned}
Rewriting the above equation we get,
2A+2B=0 2(A+B)=0 A+B=0 A=B.......Eq.(6) \begin{aligned} & 2A+2B=0 \\\ & \Rightarrow 2\left( A+B \right)=0 \\\ & \Rightarrow A+B=0 \\\ & \Rightarrow A=-B.......Eq.(6) \\\ \end{aligned}
Substituting the above relation in A and B in eq. (2) and eq. (4) we get,
2(B)2B+D=0 4B+D=0 4B=D.......Eq.(7) \begin{aligned} & 2\left( -B \right)-2B+D=0 \\\ & \Rightarrow -4B+D=0 \\\ & \Rightarrow 4B=D.......Eq.(7) \\\ \end{aligned}
8A8B4D=1 8(B)8B4D=1 16B4D=1 4(4B+D)=1 \begin{aligned} & 8A-8B-4D=1 \\\ & \Rightarrow 8\left( -B \right)-8B-4D=1 \\\ & \Rightarrow -16B-4D=1 \\\ & \Rightarrow -4\left( 4B+D \right)=1 \\\ \end{aligned}
Using eq. (7) in the above equation we get,
4(D+D)=1 8D=1 D=18 \begin{aligned} & -4\left( D+D \right)=1 \\\ & \Rightarrow -8D=1 \\\ & \Rightarrow D=-\dfrac{1}{8} \\\ \end{aligned}
Substituting the above value of D in eq. (7) we get,
4B=D 4B=18 \begin{aligned} & 4B=D \\\ & \Rightarrow 4B=-\dfrac{1}{8} \\\ \end{aligned}
Dividing 4 on both the sides of the above equation we get,
B=132B=-\dfrac{1}{32}
Substituting the above value of B in eq. (6) we get,
A=(132) A=132 \begin{aligned} & A=-\left( -\dfrac{1}{32} \right) \\\ & \Rightarrow A=\dfrac{1}{32} \\\ \end{aligned}
Substituting the above value of A and B in eq. (1) we get,
A+B+C=0 132132+C=0 C=0 \begin{aligned} & A+B+C=0 \\\ & \Rightarrow \dfrac{1}{32}-\dfrac{1}{32}+C=0 \\\ & \Rightarrow C=0 \\\ \end{aligned}
From the above calculations, we have calculated the above values of A, B, C and D. So, substituting these values in Ax2+Bx+2+Cx+Dx2+4=1(x2)(x+2)(x2+4)\dfrac{A}{x-2}+\dfrac{B}{x+2}+\dfrac{Cx+D}{{{x}^{2}}+4}=\dfrac{1}{\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)} we get,
Ax2+Bx+2+Cx+Dx2+4=1(x2)(x+2)(x2+4) 132(x2)132(x+2)+(0)x18x2+4=1(x2)(x+2)(x2+4) 132(x2)132(x+2)18(x2+4)=1(x2)(x+2)(x2+4) \begin{aligned} & \dfrac{A}{x-2}+\dfrac{B}{x+2}+\dfrac{Cx+D}{{{x}^{2}}+4}=\dfrac{1}{\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)} \\\ & \Rightarrow \dfrac{1}{32\left( x-2 \right)}-\dfrac{1}{32\left( x+2 \right)}+\dfrac{\left( 0 \right)x-\dfrac{1}{8}}{{{x}^{2}}+4}=\dfrac{1}{\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)} \\\ & \Rightarrow \dfrac{1}{32\left( x-2 \right)}-\dfrac{1}{32\left( x+2 \right)}-\dfrac{1}{8\left( {{x}^{2}}+4 \right)}=\dfrac{1}{\left( x-2 \right)\left( x+2 \right)\left( {{x}^{2}}+4 \right)} \\\ \end{aligned}
Substituting L.H.S of the above equation in place of the above fraction in the given integration we get,
(132(x2)132(x+2)18(x2+4))dx\int{\left( \dfrac{1}{32\left( x-2 \right)}-\dfrac{1}{32\left( x+2 \right)}-\dfrac{1}{8\left( {{x}^{2}}+4 \right)} \right)}dx
Rearranging the above equation we get,
132(x2)dx132(x+2)dx18(x2+4)dx\int{\dfrac{1}{32\left( x-2 \right)}dx}-\int{\dfrac{1}{32\left( x+2 \right)}dx}-\int{\dfrac{1}{8\left( {{x}^{2}}+4 \right)}dx}
Solving the integration 18(x2+4)dx\int{\dfrac{1}{8\left( {{x}^{2}}+4 \right)}dx} by taking x=2tanθx=2\tan \theta in the denominator and we get,
x=2tanθx=2\tan \theta
Differentiating on both the sides we get,
dx=2sec2θdθdx=2{{\sec }^{2}}\theta d\theta
Substituting the value of x and dx in the above integration we get,
18((2tanθ)2+4)(2sec2θdθ) =18(4tan2θ+4)(2sec2θdθ) \begin{aligned} & \int{\dfrac{1}{8\left( {{\left( 2\tan \theta \right)}^{2}}+4 \right)}\left( 2{{\sec }^{2}}\theta d\theta \right)} \\\ & =\int{\dfrac{1}{8\left( 4{{\tan }^{2}}\theta +4 \right)}}\left( 2{{\sec }^{2}}\theta d\theta \right) \\\ \end{aligned}
Now, taking 4 as common from the denominator we get,
18(4)(tan2θ+1)(2sec2θdθ)\int{\dfrac{1}{8\left( 4 \right)\left( {{\tan }^{2}}\theta +1 \right)}}\left( 2{{\sec }^{2}}\theta d\theta \right)
We know that the trigonometric identity is equal to:
1+tan2θ=sec2θ1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta
Using the above relation in 18(4)(tan2θ+1)(2sec2θdθ)\int{\dfrac{1}{8\left( 4 \right)\left( {{\tan }^{2}}\theta +1 \right)}}\left( 2{{\sec }^{2}}\theta d\theta \right) we get,
18(4)(sec2θ)(2sec2θdθ) =116(dθ) \begin{aligned} & \int{\dfrac{1}{8\left( 4 \right)\left( {{\sec }^{2}}\theta \right)}}\left( 2{{\sec }^{2}}\theta d\theta \right) \\\ & =\int{\dfrac{1}{16}}\left( d\theta \right) \\\ \end{aligned}
Integrating the above we get,
θ16+C\dfrac{\theta }{16}+C
In the above, we have assumed x=2tanθx=2\tan \theta so rearranging this equation so that we will get θ\theta in terms of x and we get,
x2=tanθ\dfrac{x}{2}=\tan \theta
Taking tan1{{\tan }^{-1}} on both the sides we get,
tan1(x2)=θ{{\tan }^{-1}}\left( \dfrac{x}{2} \right)=\theta
Substituting the above value of θ\theta in θ16+C\dfrac{\theta }{16}+C we get,
tan1(x2)16+C\dfrac{{{\tan }^{-1}}\left( \dfrac{x}{2} \right)}{16}+C
Hence, we have integrated 18(x2+4)dx\int{\dfrac{1}{8\left( {{x}^{2}}+4 \right)}dx} to tan1(x2)16+C\dfrac{{{\tan }^{-1}}\left( \dfrac{x}{2} \right)}{16}+C.
Now, we are going to do the integration of 132(x2)dx132(x+2)dx\int{\dfrac{1}{32\left( x-2 \right)}dx}-\int{\dfrac{1}{32\left( x+2 \right)}dx}. We know the integration of:
dxax+b=1alnax+b+C\int{\dfrac{dx}{ax+b}=\dfrac{1}{a}}\ln \left| ax+b \right|+C
So, using the above integration in integrating 132(x2)dx132(x+2)dx\int{\dfrac{1}{32\left( x-2 \right)}dx}-\int{\dfrac{1}{32\left( x+2 \right)}dx} we get,
132lnx2132lnx+2+C\dfrac{1}{32}\ln \left| x-2 \right|-\dfrac{1}{32}\ln \left| x+2 \right|+C
And in the above, we have integrated 18(x2+4)dx=116tan1(x2)+C-\int{\dfrac{1}{8\left( {{x}^{2}}+4 \right)}dx}=-\dfrac{1}{16}{{\tan }^{-1}}\left( \dfrac{x}{2} \right)+C

Hence, we have integrated the given integration to:
132lnx2132lnx+2tan1(x2)16+C\dfrac{1}{32}\ln \left| x-2 \right|-\dfrac{1}{32}\ln \left| x+2 \right|-\dfrac{{{\tan }^{-1}}\left( \dfrac{x}{2} \right)}{16}+C

Note: In the above integration, while integrating 132(x2)dx132(x+2)dx\int{\dfrac{1}{32\left( x-2 \right)}dx}-\int{\dfrac{1}{32\left( x+2 \right)}dx}, you have got the result 132lnx2132lnx+2+C\dfrac{1}{32}\ln \left| x-2 \right|-\dfrac{1}{32}\ln \left| x+2 \right|+C and in this result don’t forget to write the modulus sign because the expression inside the logarithm must be positive so make sure you won’t forget to write the modulus sign.