Solveeit Logo

Question

Question: How do you integrate \(\int{\dfrac{1}{{{x}^{3}}-1}}\) using partial fractions?...

How do you integrate 1x31\int{\dfrac{1}{{{x}^{3}}-1}} using partial fractions?

Explanation

Solution

Firstly use the partial fraction method to express the integrand in two separate integrands whose denominators are the individual factors of the given integrand. And then integrate them separately.
Partial fraction of the rational fraction form p(x)+q(x±a)(x±b)\dfrac{p(x)+q}{(x\pm a)(x\pm b)} is given as A(x±a)+B(x±b)\dfrac{A}{(x\pm a)}+\dfrac{B}{(x\pm b)}
Find the value of A and B by comparing it with original integrand.

Complete step by step solution:
In order to integrate 1x31\int{\dfrac{1}{{{x}^{3}}-1}} using partial fractions, we will first separate or express the integrand as sum of two integrands as follows;
We can rewrite x31=(x1)(x2+x+1){{x}^{3}}-1=\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)using the identity.
1x31=1(x1)(x2+x+1)=A(x1)+Bx+C(x2+x+1)\dfrac{1}{{{x}^{3}}-1}=\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{A}{(x-1)}+\dfrac{Bx+C}{\left( {{x}^{2}}+x+1 \right)}
Now, we will find the value of A,B and C by comparing both integrands as follows
1=A(x2+x+1)+(Bx+C)(x1)\Rightarrow 1=A\left( {{x}^{2}}+x+1 \right)+\left( Bx+C \right)\left( x-1 \right)
Equating similar terms (constants and coefficients of the variable) we will get,
A+B=0  then A=B\Rightarrow A+B=0\ \ then\ \Rightarrow A=-B------ (1)
AC=1  then C=A1\Rightarrow A-C=1\ \ then\ \Rightarrow C=A-1------ (2)
AB+C=0\Rightarrow A-B+C=0------ (3)
Substituting equation (1) and equation (2) into equation (3),
A+A+A1=0\Rightarrow A+A+A-1=0
A=13\Rightarrow A=\dfrac{1}{3}
B=13\Rightarrow B=-\dfrac{1}{3}
C=131=133=23\Rightarrow C=\dfrac{1}{3}-1=\dfrac{1-3}{3}=-\dfrac{2}{3}
Now we have the respective values of A, B and C, so putting them in the above considered integrands and then integrating them, we will get
1(x1)(x2+x+1)=13(x1)+13x23(x2+x+1)\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{1}{3(x-1)}+\dfrac{-\dfrac{1}{3}x-\dfrac{2}{3}}{\left( {{x}^{2}}+x+1 \right)}
Simplifying the above expression, we get
1(x1)(x2+x+1)=13(x1)x+23(x2+x+1)\dfrac{1}{\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)}=\dfrac{1}{3(x-1)}-\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}
Integrating the resultant expression, we obtain
13(x1)x+23(x2+x+1)dx\Rightarrow \int{\dfrac{1}{3(x-1)}-\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}}dx
Distributing the integration above subtraction, we will get
13(x1)x+23(x2+x+1)dx=13(x1)dxx+23(x2+x+1)dx\Rightarrow \int{\dfrac{1}{3(x-1)}-\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}}dx=\int{\dfrac{1}{3(x-1)}dx-\int{\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}dx}}
Now, we know that the integration of 1(x±a)\dfrac{1}{(x\pm a)} equals lnx±a+c\ln \left| x\pm a \right|+c, so integrating the above functions using this formula, we will get
13(x1)dxx+23(x2+x+1)dx=13lnx1+C113x+2(x2+x+1)dx\Rightarrow \int{\dfrac{1}{3(x-1)}dx-\int{\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}dx}}=\dfrac{1}{3}\ln \left| x-1 \right|+{{C}_{1}}-\dfrac{1}{3}\int{\dfrac{x+2}{\left( {{x}^{2}}+x+1 \right)}dx}
We can rewrite this expression x+2(x2+x+1)\dfrac{x+2}{\left( {{x}^{2}}+x+1 \right)} as 12(2x+1x2+x+1+3x2+x+1)\dfrac{1}{2}\left( \dfrac{2x+1}{{{x}^{2}}+x+1}+\dfrac{3}{{{x}^{2}}+x+1} \right)
Thus, substituting this value, we obtain
13(x1)dxx+23(x2+x+1)dx=13lnx1+C11312(2x+1x2+x+1+3x2+x+1)dx\Rightarrow \int{\dfrac{1}{3(x-1)}dx-\int{\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}dx}}=\dfrac{1}{3}\ln \left| x-1 \right|+{{C}_{1}}-\dfrac{1}{3}\int{\dfrac{1}{2}\left( \dfrac{2x+1}{{{x}^{2}}+x+1}+\dfrac{3}{{{x}^{2}}+x+1} \right)dx}
Simplifying the above expression, we get
13(x1)dxx+23(x2+x+1)dx=13lnx1+C116(2x+1x2+x+1+3x2+x+1)dx\Rightarrow \int{\dfrac{1}{3(x-1)}dx-\int{\dfrac{x+2}{3\left( {{x}^{2}}+x+1 \right)}dx}}=\dfrac{1}{3}\ln \left| x-1 \right|+{{C}_{1}}-\dfrac{1}{6}\int{\left( \dfrac{2x+1}{{{x}^{2}}+x+1}+\dfrac{3}{{{x}^{2}}+x+1} \right)dx}
Now solving,
16(2x+1x2+x+1+3x2+x+1)dx=16lnx2+x+1+C2163x2+x+1dx\Rightarrow -\dfrac{1}{6}\int{\left( \dfrac{2x+1}{{{x}^{2}}+x+1}+\dfrac{3}{{{x}^{2}}+x+1} \right)dx}=-\dfrac{1}{6}\ln \left| {{x}^{2}}+x+1 \right|+{{C}_{2}}-\dfrac{1}{6}\int{\dfrac{3}{{{x}^{2}}+x+1}}dx
Simplifying the above by splitting middle term of the quadratic equation.
As we know that,
163x2+x+1dx=361(x+12)2+34dx=121(x+12)2+34dx\Rightarrow -\dfrac{1}{6}\int{\dfrac{3}{{{x}^{2}}+x+1}}dx=-\dfrac{3}{6}\int{\dfrac{1}{{{\left( x+\dfrac{1}{2} \right)}^{2}}+\dfrac{3}{4}}dx}=-\dfrac{1}{2}\int{\dfrac{1}{{{\left( x+\dfrac{1}{2} \right)}^{2}}+\dfrac{3}{4}}dx}
Let substitutes=x+12 then ds=dxs=x+\dfrac{1}{2}\ then\ ds=dx,
121(x+12)2+34dx=121s2+34dx==124343(s2+34)dx=23143s2+1dx\Rightarrow -\dfrac{1}{2}\int{\dfrac{1}{{{\left( x+\dfrac{1}{2} \right)}^{2}}+\dfrac{3}{4}}dx}=-\dfrac{1}{2}\int{\dfrac{1}{{{s}^{2}}+\dfrac{3}{4}}dx}==-\dfrac{1}{2}\int{\dfrac{\dfrac{4}{3}}{\dfrac{4}{3}\left( {{s}^{2}}+\dfrac{3}{4} \right)}dx=-\dfrac{2}{3}\int{\dfrac{1}{\dfrac{4}{3}{{s}^{2}}+1}}}dx
Let p=23s then dp=23dsp=\dfrac{2}{\sqrt{3}}s\ then\ dp=\dfrac{2}{\sqrt{3}}ds
Therefore,
23143s2+1ds=131p2+1dp\Rightarrow -\dfrac{2}{3}\int{\dfrac{1}{\dfrac{4}{3}{{s}^{2}}+1}}ds=-\dfrac{1}{\sqrt{3}}\int{\dfrac{1}{{{p}^{2}}+1}dp}
The given integral is an arctangent integral.
Thus,
=131p2+1dp=13arctanp+C3=-\dfrac{1}{\sqrt{3}}\int{\dfrac{1}{{{p}^{2}}+1}dp}=-\dfrac{1}{\sqrt{3}}\arctan p+{{C}_{3}}
Undo the substitution, we get
13arctanp+C3=33arctan((2x+1)33)+C3\Rightarrow -\dfrac{1}{\sqrt{3}}\arctan p+{{C}_{3}}=-\dfrac{\sqrt{3}}{3}\arctan \left( \dfrac{\left( 2x+1 \right)\sqrt{3}}{3} \right)+{{C}_{3}}
Now,
Combining all three integrals, we get
1x31=13lnx116lnx2+x+133arctan((2x+1)33)+C\Rightarrow \int{\dfrac{1}{{{x}^{3}}-1}}=\dfrac{1}{3}\ln \left| x-1 \right|-\dfrac{1}{6}\ln \left| {{x}^{2}}+x+1 \right|-\dfrac{\sqrt{3}}{3}\arctan \left( \dfrac{\left( 2x+1 \right)\sqrt{3}}{3} \right)+C
Taking out 16\dfrac{1}{6} as a common factor, we get
1x31=16(2lnx1lnx2+x+123arctan((2x+1)33))+C\Rightarrow \int{\dfrac{1}{{{x}^{3}}-1}}=\dfrac{1}{6}\left( 2\ln \left| x-1 \right|-\ln \left| {{x}^{2}}+x+1 \right|-2\sqrt{3}\arctan \left( \dfrac{\left( 2x+1 \right)\sqrt{3}}{3} \right) \right)+C
Hence, it is the required integration.

Note: When doing indefinite integration, always write +c+c part after the integration. This +c+c part indicates the constant part remains after integration and can be understood when you explore it graphically. Infinite integration constant gets cancelled out, so we only write it in indefinite integration.