Solveeit Logo

Question

Question: How do you integrate \(\int{\dfrac{1}{\sqrt{{{x}^{2}}-9}}}\) using trigonometric substitutions?...

How do you integrate 1x29\int{\dfrac{1}{\sqrt{{{x}^{2}}-9}}} using trigonometric substitutions?

Explanation

Solution

In the problem they have asked to use the trigonometric substitutions, by looking the given equation we will use the trigonometric identity sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1. So, we will take the substitution x2=9sec2y{{x}^{2}}=9{{\sec }^{2}}y. From this equation we will calculate the value of xx and dxdx in terms of yy and dydy, by using the algebraic formulas and differentiation formulas. Now we will convert the given equation in terms of yy and dydy by substituting the value of xx and dxdx in the given equation. Now we will simplify the obtained equation. After integrating the above value, we will get the result in terms of yy, but we need to calculate the result in terms of xx, so we will calculate the value of yy from our assumption i.e., x2=9sec2y{{x}^{2}}=9{{\sec }^{2}}y and substitute it in the obtained equation to get the result.

Complete step-by-step solution:
Given that, 1x29\int{\dfrac{1}{\sqrt{{{x}^{2}}-9}}}.
Let us take the substitution x2=9sec2y{{x}^{2}}=9{{\sec }^{2}}y.
From the above substitution the value of xx can be obtained by taking square root on both sides of the equation, then
x2=9sec2y x=3secy....(i) \begin{aligned} & \sqrt{{{x}^{2}}}=\sqrt{9{{\sec }^{2}}y} \\\ & \Rightarrow x=3\sec y....\left( \text{i} \right) \\\ \end{aligned}
Differentiating the above value, then we will get
dx=3secytany.dydx=3\sec y\tan y.dy
Now substituting the all values, we have in the given equation, then we will get
1x29dx=19sec2y93secytanydy\Rightarrow \int{\dfrac{1}{\sqrt{{{x}^{2}}-9}}dx}=\int{\dfrac{1}{\sqrt{9{{\sec }^{2}}y-9}}3\sec y\tan ydy}
Taking 99 common in the square root function, then we will get
1x29dx=3secytany9(sec2y1)dy\Rightarrow \int{\dfrac{1}{\sqrt{{{x}^{2}}-9}}dx}=\int{\dfrac{3\sec y\tan y}{\sqrt{9\left( {{\sec }^{2}}y-1 \right)}}dy}
From the trigonometric identity sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1, we have the value sec2y1=tan2y{{\sec }^{2}}y-1={{\tan }^{2}}y, then the above equation modified as
1x29dx=3secytany9tan2ydy 1x29dx=3secytany3tanydy \begin{aligned} & \Rightarrow \int{\dfrac{1}{\sqrt{{{x}^{2}}-9}}dx}=\int{\dfrac{3\sec y\tan y}{\sqrt{9{{\tan }^{2}}y}}dy} \\\ & \Rightarrow \int{\dfrac{1}{\sqrt{{{x}^{2}}-9}}dx}=\int{\dfrac{3\sec y\tan y}{3\tan y}dy} \\\ \end{aligned}
Cancelling the terms which are in both numerator and denominator, then we will get
1x29dx=secydy\Rightarrow \int{\dfrac{1}{\sqrt{{{x}^{2}}-9}}dx}=\int{\sec ydy}
We have the integration formulas secydy=logsecy+tany+C\int{\sec ydy}=\log \left| \sec y+\tan y \right|+C then we will get
1x29dx=logsecy+tany+C\Rightarrow \int{\dfrac{1}{\sqrt{{{x}^{2}}-9}}dx}=\log \left| \sec y+\tan y \right|+C
From equation (i)\left( \text{i} \right), we have
x=3secy secy=x3...(ii) \begin{aligned} & x=3\sec y \\\ & \Rightarrow \sec y=\dfrac{x}{3}...\left( \text{ii} \right) \\\ \end{aligned}
From the trigonometric identity sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1, then value of tany\tan y will be
tan2y=sec2y1 tany=(x3)21.....(iii) \begin{aligned} & {{\tan }^{2}}y={{\sec }^{2}}y-1 \\\ & \Rightarrow \tan y=\sqrt{{{\left( \dfrac{x}{3} \right)}^{2}}-1}.....\left( \text{iii} \right) \\\ \end{aligned}
From equations (ii)\left( \text{ii} \right), (iii)\left( \text{iii} \right) the value of 1x29\int{\dfrac{1}{\sqrt{{{x}^{2}}-9}}} is
1x29dx=logx3+(x3)21+C\Rightarrow \int{\dfrac{1}{\sqrt{{{x}^{2}}-9}}}dx=\log \left| \dfrac{x}{3}+\sqrt{{{\left( \dfrac{x}{3} \right)}^{2}}-1} \right|+C
Hence the value of 1x29dx\int{\dfrac{1}{\sqrt{{{x}^{2}}-9}}}dx is logx3+13x29+C\log \left| \dfrac{x}{3}+\dfrac{1}{3}\sqrt{{{x}^{2}}-9} \right|+C.

Note: In the problem they have specially mentioned to use the trigonometric substitution, so we have followed the above procedure otherwise we have direct formula for this problem i.e., dxx2a2=logx+x2a2+C\int{\dfrac{dx}{\sqrt{{{x}^{2}}-{{a}^{2}}}}=\log \left| x+\sqrt{{{x}^{2}}-{{a}^{2}}} \right|+C}. We will convert the given equation in the above form and use this formula to get the result.