Solveeit Logo

Question

Question: How do you integrate \[\dfrac{{{x^{\dfrac{1}{3}}}}}{{\left( {\left( {{x^{\dfrac{1}{3}}}} \right) - 1...

How do you integrate x13((x13)1)\dfrac{{{x^{\dfrac{1}{3}}}}}{{\left( {\left( {{x^{\dfrac{1}{3}}}} \right) - 1} \right)}}?

Explanation

Solution

To solve this we will use a substitution method. We will first substitute the term in the denominator to be equal to some variable tt. Then, we will try to write the numerator in terms of tt by simplifying from the substitution. After that, we will find the value of dxdx by differentiating the expression we will obtain by substituting, in terms of tt and dtdt. We will then have our expression in simplified form in terms of tt. Integrating the whole expression with respect to tt using the formulas:
(f(x)+g(x))dx=f(x)dx+g(x)dx\int {\left( {f\left( x \right) + g\left( x \right)} \right)} dx = \int {f\left( x \right)} dx + \int {g\left( x \right)} dx
xndx=xn+1n+1+c\Rightarrow \int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c, where cc is a constant term.
1xdx=lnx+c\Rightarrow \int {\dfrac{1}{x}} dx = \ln |x| + c, where cc is a constant term.
cdx=cx+k\Rightarrow \int c dx = cx + k, where kk is a constant term.
We will then substitute the value of tt back and obtain our answer in terms of xx.

Complete step by step answer:
We need to integrate x13((x13)1)\dfrac{{{x^{\dfrac{1}{3}}}}}{{\left( {\left( {{x^{\dfrac{1}{3}}}} \right) - 1} \right)}}. i.e. we need to find x13((x13)1)dx\int {\dfrac{{{x^{\dfrac{1}{3}}}}}{{\left( {\left( {{x^{\dfrac{1}{3}}}} \right) - 1} \right)}}} dx.
Let us consider I=x13((x13)1)dx(1)I = \int {\dfrac{{{x^{\dfrac{1}{3}}}}}{{\left( {\left( {{x^{\dfrac{1}{3}}}} \right) - 1} \right)}}} dx - - - - - - (1)
Let (x13)1=t(2)\left( {{x^{\dfrac{1}{3}}}} \right) - 1 = t - - - - - - (2)

Rearranging the terms in (2), we get
(x13)=t+1(3)\Rightarrow \left( {{x^{\dfrac{1}{3}}}} \right) = t + 1 - - - - - - (3)
Now, taking cube both the sides, we get
(x13)3=(t+1)3\Rightarrow {\left( {{x^{\dfrac{1}{3}}}} \right)^3} = {\left( {t + 1} \right)^3}
Now, using the property (am)n=amn{\left( {{a^m}} \right)^n} = {a^{mn}}, we have
(x)13×3=(t+1)3\Rightarrow {\left( x \right)^{\dfrac{1}{3} \times 3}} = {\left( {t + 1} \right)^3}
(x)1=(t+1)3\Rightarrow {\left( x \right)^1} = {\left( {t + 1} \right)^3}
x=(t+1)3\Rightarrow x = {\left( {t + 1} \right)^3}
Now, differentiating both sides with respect to tt, we get
dxdt=ddt((t+1)3)\Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left( {{{\left( {t + 1} \right)}^3}} \right)

Now, using the property ddx((x+c)n)=n(x+c)n1\dfrac{d}{{dx}}\left( {{{\left( {x + c} \right)}^n}} \right) = n{\left( {x + c} \right)^{n - 1}}, where cc is a constant term, we get
dxdt=3(t+1)31\Rightarrow \dfrac{{dx}}{{dt}} = 3{\left( {t + 1} \right)^{3 - 1}}
dxdt=3(t+1)2\Rightarrow \dfrac{{dx}}{{dt}} = 3{\left( {t + 1} \right)^2}
dx=3(t+1)2dt(4)\Rightarrow dx = 3{\left( {t + 1} \right)^2}dt - - - - - - (4)
Now, substituting (2), (3) and (4) in (1), we get
I=t+1t×3(t+1)2dt\Rightarrow I = \int {\dfrac{{t + 1}}{t} \times 3{{\left( {t + 1} \right)}^2}} dt
Now, multiplying the terms in the numerator, we get
I=3(t+1)3tdt\Rightarrow I = \int {\dfrac{{3{{\left( {t + 1} \right)}^3}}}{t}} dt
Now, using the Property c(f(x))dx=c(f(x))dx\int {c\left( {f\left( x \right)} \right)} dx = c\int {\left( {f\left( x \right)} \right)} dx, we have
I=3(t+1)3tdt\Rightarrow I = 3\int {\dfrac{{{{\left( {t + 1} \right)}^3}}}{t}} dt

Simplifying the term in numerator using the formula (a+b)3=a3+b3+3a2b+3ab2{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}, we get
I=3t3+(1)3+3t2(1)+3t(1)2tdt\Rightarrow I = 3\int {\dfrac{{{t^3} + {{\left( 1 \right)}^3} + 3{t^2}\left( 1 \right) + 3t{{\left( 1 \right)}^2}}}{t}} dt
As we know, (1)n=1{\left( 1 \right)^n} = 1 for any nn. So, our expression becomes
I=3t3+1+3t2+3ttdt\Rightarrow I = 3\int {\dfrac{{{t^3} + 1 + 3{t^2} + 3t}}{t}} dt
Now, separating the denominator with each term, we get
I=3(t3t+1t+3t2t+3tt)dt\Rightarrow I = 3\int {\left( {\dfrac{{{t^3}}}{t} + \dfrac{1}{t} + \dfrac{{3{t^2}}}{t} + \dfrac{{3t}}{t}} \right)} dt
Now, cancelling out the terms, we get
I=3(t2+1t+3t+3)dt\Rightarrow I = 3\int {\left( {{t^2} + \dfrac{1}{t} + 3t + 3} \right)} dt

Now, using the property (f(x)+g(x))dx=f(x)dx+g(x)dx\int {\left( {f\left( x \right) + g\left( x \right)} \right)} dx = \int {f\left( x \right)} dx + \int {g\left( x \right)} dx, we get
I=3(t2dt+1tdt+3tdt+3dt)\Rightarrow I = 3\left( {\int {{t^2}} dt + \int {\dfrac{1}{t}} dt + \int {3t} dt + \int 3 dt} \right)
Using c(f(x))dx=c(f(x))dx\int {c\left( {f\left( x \right)} \right)} dx = c\int {\left( {f\left( x \right)} \right)} dx in the third term, we get
I=3(t2dt+1tdt+3tdt+3dt)\Rightarrow I = 3\left( {\int {{t^2}} dt + \int {\dfrac{1}{t}} dt + 3\int t dt + \int 3 dt} \right)
Now, using the formulas cdx=cx+k\int c dx = cx + k, xndx=xn+1n+1+c\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c and 1xdx=lnx+c\int {\dfrac{1}{x}} dx = \ln |x| + c,where cc is a constant, we get
I=3((t2+12+1+c1)+(lnt+c2)+3(t1+11+1+c3)+3(t+c4))\Rightarrow I = 3\left( {\left( {\dfrac{{{t^{2 + 1}}}}{{2 + 1}} + {c_1}} \right) + \left( {\ln |t| + {c_2}} \right) + 3\left( {\dfrac{{{t^{1 + 1}}}}{{1 + 1}} + {c_3}} \right) + 3\left( {t + {c_4}} \right)} \right), where c1,c2,c3,c4{c_1},{c_2},{c_3},{c_4} are constants

Solving the brackets, we have
I=3((t33+c1)+(lnt+c2)+(3t22+3c3)+(3t+3c4))\Rightarrow I = 3\left( {\left( {\dfrac{{{t^3}}}{3} + {c_1}} \right) + \left( {\ln |t| + {c_2}} \right) + \left( {\dfrac{{3{t^2}}}{2} + 3{c_3}} \right) + \left( {3t + 3{c_4}} \right)} \right), where c1,c2,c3,c4{c_1},{c_2},{c_3},{c_4} are constants
Now, combining all the constant terms, we get
I=3(t33+lnt+3t22+3t+(c1+c2+3c3+3c4))\Rightarrow I = 3\left( {\dfrac{{{t^3}}}{3} + \ln |t| + \dfrac{{3{t^2}}}{2} + 3t + \left( {{c_1} + {c_2} + 3{c_3} + 3{c_4}} \right)} \right), where c1,c2,c3,c4{c_1},{c_2},{c_3},{c_4} are constants
Now, Opening the brackets, we get
I=3t33+3lnt+9t22+9t+3(c1+c2+3c3+3c4)\Rightarrow I = \dfrac{{3{t^3}}}{3} + 3\ln |t| + \dfrac{{9{t^2}}}{2} + 9t + 3\left( {{c_1} + {c_2} + 3{c_3} + 3{c_4}} \right), where c1,c2,c3,c4{c_1},{c_2},{c_3},{c_4} are constants
Letting 3(c1+c2+3c3+3c4)=c3\left( {{c_1} + {c_2} + 3{c_3} + 3{c_4}} \right) = c, we get
I=3t33+3lnt+9t22+9t+c\Rightarrow I = \dfrac{{3{t^3}}}{3} + 3\ln |t| + \dfrac{{9{t^2}}}{2} + 9t + c, where cc is a constant term.

Cancelling the term, we get
I=t3+3lnt+9t22+9t+c\Rightarrow I = {t^3} + 3\ln |t| + \dfrac{{9{t^2}}}{2} + 9t + c
Now, substituting back the value of tt from (2), we get
I=(x131)3+3lnx131+9(x131)22+9(x131)+c\Rightarrow I = {\left( {{x^{\dfrac{1}{3}}} - 1} \right)^3} + 3\ln |{x^{\dfrac{1}{3}}} - 1| + \dfrac{{9{{\left( {{x^{\dfrac{1}{3}}} - 1} \right)}^2}}}{2} + 9\left( {{x^{\dfrac{1}{3}}} - 1} \right) + c, where cc is a constant term.
I=(x131)3+3lnx131+92(x131)2+9(x131)+c\therefore I = {\left( {{x^{\dfrac{1}{3}}} - 1} \right)^3} + 3\ln |{x^{\dfrac{1}{3}}} - 1| + \dfrac{9}{2}{\left( {{x^{\dfrac{1}{3}}} - 1} \right)^2} + 9\left( {{x^{\dfrac{1}{3}}} - 1} \right) + c, where cc is a constant term.

Hence, x13((x13)1)dx=(x131)3+3lnx131+92(x131)2+9(x131)+c\int {\dfrac{{{x^{\dfrac{1}{3}}}}}{{\left( {\left( {{x^{\dfrac{1}{3}}}} \right) - 1} \right)}}} dx = {\left( {{x^{\dfrac{1}{3}}} - 1} \right)^3} + 3\ln |{x^{\dfrac{1}{3}}} - 1| + \dfrac{9}{2}{\left( {{x^{\dfrac{1}{3}}} - 1} \right)^2} + 9\left( {{x^{\dfrac{1}{3}}} - 1} \right) + c, where cc is a constant term.

Note: We could have solved this problem by first adding and subtracting 11 in the numerator and then splitting the denominator to cancel out some terms and make the expression simple. After that, we will separately integrate both the terms and add them. To solve the integration, we take x13=t{x^{\dfrac{1}{3}}} = t and then make changes in the numerator and denominator and finding out dxdx in terms of tt and then following the same procedure as we did in this question.