Question
Question: How do you integrate \(\dfrac{{{x}^{4}}+{{x}^{3}}+{{x}^{2}}+1}{{{x}^{2}}+x-2}\) using partial fracti...
How do you integrate x2+x−2x4+x3+x2+1 using partial fractions?
Solution
We first try to describe the requirement and the process of finding the partial fractions. Then we factorise the denominator of x2+x−2x4+x3+x2+1. We form the numerator of x2−x−25x−1 with the factors. We simplify the equation x2−x−25x−1=x−2A+x+1B to find the partial fraction form.
Complete step by step solution:
For our given problem x2+x−2x4+x3+x2+1, we first break x4+x3+x2+1 into factors.
We have x4+x3+x2+1=x2(x2+x−2)+3x2+1=x2(x2+x−2)+3(x2+x−2)−3x+7.
x2+x−2x4+x3+x2+1=x2+x−2x2(x2+x−2)+3(x2+x−2)−3x+7=x2+3−x2+x−23x−7
Now we apply partial fractions for x2+x−23x−7
Using middle-term factorisation we get
x2+x−2=x2+2x−x−2=x(x+2)−(x+2)=(x+2)(x−1)
Now we have to arrange the numerator 3x−7 in the binary addition and subtraction of the same factors of x2+x−2 which are (x+2),(x−1).
We can do that directly or apply the form where x2+x−23x−7=x+2A+x−1B.
We simplify the x+2A+x−1B. We get x+2A+x−1B=(x+2)(x−1)A(x−1)+B(x+2).
So, x2+x−23x−7=x+2A+x−1B=(x+2)(x−1)A(x−1)+B(x+2) gives 3x−7=A(x−1)+B(x+2).
Simplifying we get 3x−7=A(x−1)+B(x+2)=x(A+B)+(2B−A).
Equating the variables and constants we get (A+B)=3;(2B−A)=−7.
Adding the equations, we get
(A+B)+(2B−A)=3−7⇒3B=−4⇒B=3−4
This gives A=3−B=3−3−4=313.
The partial fraction form becomes x2+x−23x−7=x+213/3+x−1−4/3.
The final form is x2+x−2x4+x3+x2+1=x2+3−x+213/3+x−14/3
Now we integrate ∫x2+x−2x4+x3+x2+1dx=∫(x2+3−x+213/3+x−14/3)dx.