Solveeit Logo

Question

Question: How do you integrate \[\dfrac{{{x^4} + 1}}{{{x^3} + 2x}}\] using partial fractions?...

How do you integrate x4+1x3+2x\dfrac{{{x^4} + 1}}{{{x^3} + 2x}} using partial fractions?

Explanation

Solution

Hint : We need to integrate the given equation by using the partial fractions. In order to use the partial fractions the power value of the numerator must be less than the power value of the denominator. Otherwise, we have to use a long division method to solve the problem.

Complete step-by-step answer :
Given,
Integrate x4+1x3+2x\dfrac{{{x^4} + 1}}{{{x^3} + 2x}}
By using long division method, we get
x4+1x3+2x=x2x21x3+2x\dfrac{{{x^4} + 1}}{{{x^3} + 2x}} = x - \dfrac{{2{x^2} - 1}}{{{x^3} + 2x}}
Take factoring out xx from the denominator, we get
2x21x3+2x=x2x21x(x2+2)\dfrac{{2{x^2} - 1}}{{{x^3} + 2x}} = x - \dfrac{{2{x^2} - 1}}{{x({x^2} + 2)}}
By using the partial decomposition of 2x21x(x2+2)\dfrac{{2{x^2} - 1}}{{x({x^2} + 2)}} and break into multiple factors,
2x21x(x2+2)=Ax+Bxx2+2\dfrac{{2{x^2} - 1}}{{x({x^2} + 2)}} = \dfrac{A}{x} + \dfrac{{Bx}}{{{x^2} + 2}} …………… (1)(1)
By multiplying common denominator x(x2+2)x({x^2} + 2) on both sides, we get
2x21=A(x2+2)+Bx22{x^2} - 1 = A({x^2} + 2) + B{x^2} ………. (2)(2)
To find the value of AA and BB by the factor value of x=0,x = 0, then put x=1x = 1 ,
If x=0,x = 0, substitute the equation (2)(2) gives,

2(0) - 1 = A(0 + 2) + B(0) \\\ \- 1 = 2A \\\ A = \dfrac{{ - 1}}{2} \\\ $$ $$$$ By applying the value $$A$$ in equation $$(2)$$ $$2{x^2} - 1 = - \dfrac{1}{2}({x^2} + 2) + B{x^2}$$ …………. $$(3)$$ $$$$ If $$x = 1$$ , substitute in equation $$(3)$$ gives,

1 = - \dfrac{3}{2} + B ;

To simplify, then we get $$B = \dfrac{{2 + 3}}{2}$$ Then, the value of $$B = \dfrac{5}{2}$$ By substitute all the values into the equation $$(1)$$ , Partial decomposition

\dfrac{{2{x^2} - 1}}{{x({x^2} + 2)}} = x - \dfrac{{\left[ {\dfrac{{ - 1}}{2}} \right] }}{x} + \dfrac{{\dfrac{5}{2}x}}{{{x^2} + 2}} \\
\dfrac{{{x^4} - 1}}{{({x^3} + 2x)}} = x + \dfrac{{\dfrac{1}{2}}}{x} + \dfrac{{\dfrac{5}{2}x}}{{{x^2} + 2}} ;

Tointegratingtheaboveequation,wegetTo integrating the above equation, we get

\int {\left( {x + \dfrac{{\dfrac{1}{2}}}{x} + \dfrac{{\dfrac{5}{2}x}}{{{x^2} + 2}}} \right)dx} \\
\int {xdx + \int {\dfrac{{\dfrac{1}{2}}}{x}dx + \dfrac{5}{2}\int {\dfrac{x}{{{x^2} + 2}}dx} } } ;

To simplify the integration, $$\int {xdx + \dfrac{1}{2}\int {\dfrac{1}{x}dx + \dfrac{5}{2}\int {\left( {\dfrac{x}{{{x^2} + 2}}} \right)dx} } } $$ By apply the integral formula, we have $$\dfrac{{{x^2}}}{2} + \dfrac{1}{2}In(x) + C + \dfrac{5}{2}\int {\left( {\dfrac{x}{{{x^2} + 2}}} \right)dx} $$ …………. $$(4)$$ By substitute $$u$$ on the last equation of above, we get Let us consider, $$u = {x^2} + 2$$ By differentiate $$u$$ with respect to $$x$$ , we get

du = 2xdx \\
xdx = \dfrac{1}{2}du ;

Now, $$\int {\left( {\dfrac{x}{{{x^2} + 2}}} \right)dx} = \int {\left( {\dfrac{1}{u}} \right)\dfrac{1}{2}du = \dfrac{1}{2}In(u) + C} $$ So, apply back the value of $$u = {x^2} + 2$$ , $$\int {\left( {\dfrac{x}{{{x^2} + 2}}} \right)dx} = \dfrac{1}{2}In({x^2} + 2) + C$$ ……….. $$(5)$$ By substitute the equation $$(5)$$ in $$(4)$$ , we get $$\dfrac{{{x^2}}}{2} + \dfrac{1}{2}In(x) + C + \dfrac{5}{2}\left( {\dfrac{1}{2}In({x^2} + 2) + C} \right)$$ Hence, The final answer is $$\dfrac{{{x^2}}}{2} + \dfrac{1}{2}In(x) + C + \dfrac{5}{2}In\left( {{x^2} + 2} \right) + C$$ . **So, the correct answer is “$$\dfrac{{{x^2}}}{2} + \dfrac{1}{2}In(x) + \dfrac{5}{2}In\left( {{x^2} + 2} \right) + C$$ ”.** **Note** : We need to integrate the given equation by using the partial fractions. In order to use the partial fractions the power value of the numerator must be less than the power value of the denominator. Otherwise, we have to use a long division method to solve the problem and use some integration formula.