Question
Question: How do you integrate \[\dfrac{{{x^4} + 1}}{{{x^3} + 2x}}\] using partial fractions?...
How do you integrate x3+2xx4+1 using partial fractions?
Solution
Hint : We need to integrate the given equation by using the partial fractions. In order to use the partial fractions the power value of the numerator must be less than the power value of the denominator. Otherwise, we have to use a long division method to solve the problem.
Complete step-by-step answer :
Given,
Integrate x3+2xx4+1
By using long division method, we get
x3+2xx4+1=x−x3+2x2x2−1
Take factoring out x from the denominator, we get
x3+2x2x2−1=x−x(x2+2)2x2−1
By using the partial decomposition of x(x2+2)2x2−1 and break into multiple factors,
x(x2+2)2x2−1=xA+x2+2Bx …………… (1)
By multiplying common denominator x(x2+2) on both sides, we get
2x2−1=A(x2+2)+Bx2 ………. (2)
To find the value of A and B by the factor value of x=0, then put x=1 ,
If x=0, substitute the equation (2) gives,
1 = - \dfrac{3}{2} + B ;
To simplify, then we get $$B = \dfrac{{2 + 3}}{2}$$ Then, the value of $$B = \dfrac{5}{2}$$ By substitute all the values into the equation $$(1)$$ , Partial decomposition\dfrac{{2{x^2} - 1}}{{x({x^2} + 2)}} = x - \dfrac{{\left[ {\dfrac{{ - 1}}{2}} \right] }}{x} + \dfrac{{\dfrac{5}{2}x}}{{{x^2} + 2}} \\
\dfrac{{{x^4} - 1}}{{({x^3} + 2x)}} = x + \dfrac{{\dfrac{1}{2}}}{x} + \dfrac{{\dfrac{5}{2}x}}{{{x^2} + 2}} ;
\int {\left( {x + \dfrac{{\dfrac{1}{2}}}{x} + \dfrac{{\dfrac{5}{2}x}}{{{x^2} + 2}}} \right)dx} \\
\int {xdx + \int {\dfrac{{\dfrac{1}{2}}}{x}dx + \dfrac{5}{2}\int {\dfrac{x}{{{x^2} + 2}}dx} } } ;
du = 2xdx \\
xdx = \dfrac{1}{2}du ;