Solveeit Logo

Question

Question: How do you integrate \(\dfrac{{{x^2} + 2x - 1}}{{{x^3} - x}}dx?\)...

How do you integrate x2+2x1x3xdx?\dfrac{{{x^2} + 2x - 1}}{{{x^3} - x}}dx?

Explanation

Solution

In this question, we need to evaluate the given equation. For this, we will use the partial fraction method and apply the defined integral formulae.

Complete step by step answer:
Let the given integral be II ,so, we can write I=x2+2x1x3xdxI = \int {\dfrac{{{x^2} + 2x - 1}}{{{x^3} - x}}dx}
Now, by following the partial fraction method, we can write the function x2+2x1x3x\dfrac{{{x^2} + 2x - 1}}{{{x^3} - x}} as
x2+2x1x3x=x2+2x1x(x21)\dfrac{{{x^2} + 2x - 1}}{{{x^3} - x}} = \dfrac{{{x^2} + 2x - 1}}{{x({x^2} - 1)}}
We know that the 12=1{1^2} = 1 , substitute this in the position of 11 and we get
=x2+2x1x(x212)= \dfrac{{{x^2} + 2x - 1}}{{x({x^2} - {1^2})}}
We use the formula a2b2=(a+b)(ab){a^2} - {b^2} = (a + b)(a - b) in the above function and we get
=x2+2x1x(x+1)(x1)= \dfrac{{{x^2} + 2x - 1}}{{x(x + 1)(x - 1)}}
We use the partial fraction method and we get
x2+2x1x3x=Ax+Bx1+Cx+1\dfrac{{{x^2} + 2x - 1}}{{{x^3} - x}} = \dfrac{A}{x} + \dfrac{B}{{x - 1}} + \dfrac{C}{{x + 1}}
=A(x+1)(x1)+Bx(x+1)+Cx(x1)x(x+1)(x1)= \dfrac{{A(x + 1)(x - 1) + Bx(x + 1) + Cx(x - 1)}}{{x(x + 1)(x - 1)}}
=A(x21)+B(x2+x)+C(x2x)x3x= \dfrac{{A({x^2} - 1) + B({x^2} + x) + C({x^2} - x)}}{{{x^3} - x}}
=(A+B+C)x2+(BC)xAx3x= \dfrac{{(A + B + C){x^2} + (B - C)x - A}}{{{x^3} - x}}
Therefore x2+2x1x3x=(A+B+C)x2+(BC)xAx3x\dfrac{{{x^2} + 2x - 1}}{{{x^3} - x}} = \dfrac{{(A + B + C){x^2} + (B - C)x - A}}{{{x^3} - x}}
Now, comparing the coefficients of both sides of the above equation, we get
A+B+C=1A + B + C = 1 …………………………………………(i)
BC=2B - C = 2 ………………………………………………(ii)
A=1A = 1 …………………………………………………(iii)
Solving above three equations and we get
From (iii) we get A=1A = 1
Substitute (iii) in (i), we get
1+B+C=1\Rightarrow 1 + B + C = 1
Simplifying, we get
B+C=0\Rightarrow B + C = 0 …………………………………………….(iv)
Adding (ii) and (iv), we get
(BC)+(B+C)=2+0(B - C) + (B + C) = 2 + 0
2B=2\Rightarrow 2B = 2
Divide both sides by 22 , we get
B=1\Rightarrow B = 1
Putting B=1B = 1 in equation (iv), we get
1+C=0\Rightarrow 1 + C = 0
C=1\Rightarrow C = - 1
Hence the values of A,B,CA,B,C are 1,1,11,1, - 1 respectively.
So , the given integral function can be written as
x2+2x1x3xdx=(Ax+Bx1+Cx+1)dx\int {\dfrac{{{x^2} + 2x - 1}}{{{x^3} - x}}} dx = \int {\left( {\dfrac{A}{x} + \dfrac{B}{{x - 1}} + \dfrac{C}{{x + 1}}} \right)} dx
=(1x+1x1+1x+1)dx= \int {\left( {\dfrac{1}{x} + \dfrac{1}{{x - 1}} + \dfrac{{ - 1}}{{x + 1}}} \right)} dx
Now, applying the property of the integration function (A+B+C)dx=Adx+Bdx+Cdx\int {\left( {A + B + C} \right)dx = \int {Adx} + \int {Bdx} + \int {Cdx} } in the above function, we get
x2+2x1x3xdx=(1x+1x1+1x+1)dx\Rightarrow \int {\dfrac{{{x^2} + 2x - 1}}{{{x^3} - x}}} dx = \int {\left( {\dfrac{1}{x} + \dfrac{1}{{x - 1}} + \dfrac{{ - 1}}{{x + 1}}} \right)} dx
=1xdx+1x1dx1x+1dx= \int {\dfrac{1}{x}dx + \int {\dfrac{1}{{x - 1}}dx} - \int {\dfrac{1}{{x + 1}}dx} }
Again, applying the property of the integration function dxx=logx\int {\dfrac{{dx}}{x} = \log x} in the above equation, we get
=logx+log(x1)log(x+1)+c= \log x + \log (x - 1) - \log (x + 1) + c
Hence, we can see that the value of the integral x2+2x1x3xdx\int {\dfrac{{{x^2} + 2x - 1}}{{{x^3} - x}}} dx is logx+log(x1)log(x+1)+c\log x + \log (x - 1) - \log (x + 1) + c , where cc is the integral constant.

Note:
It is interesting to note here that for the partial fraction method, if the denominator term is a raised to the power terms then, we need to bifurcate it as 1(y+1)2=Ay+1+B(y+1)2\dfrac{1}{{{{(y + 1)}^2}}} = \dfrac{A}{{y + 1}} + \dfrac{B}{{{{(y + 1)}^2}}} where as if the denominator includes a quadratic equation then, we need to bifurcate it as 1(y+2)(y2+4y+2)=Ax+By2+4y+2+Cy+2\dfrac{1}{{(y + 2)({y^2} + 4y + 2)}} = \dfrac{{Ax + B}}{{{y^2} + 4y + 2}} + \dfrac{C}{{y + 2}} .