Solveeit Logo

Question

Question: How do you integrate by parts \[\left( {x \cdot {e^{4x}}} \right)dx\] ?...

How do you integrate by parts (xe4x)dx\left( {x \cdot {e^{4x}}} \right)dx ?

Explanation

Solution

Hint : This question involves the arithmetic operations like addition/ subtraction/ multiplication/ division. We need to know the basic formulae of integral functions. Also, we need to know the process of solving differentiation functions and integration functions. Also, we need to know how to convert the mixed fraction terms into simple fraction terms.

Complete step-by-step answer :
The given question is shown below,
(xe4x)dx=?(1)\int {\left( {x \cdot {e^{4x}}} \right)dx = ? \to \left( 1 \right)}
We know that,
udv=uvvdu(2)\int {u \cdot dv = uv - \int {vdu \to \left( 2 \right)} }
Let’s compare the equation (1)\left( 1 \right) and (2)\left( 2 \right) ,
(1)(xe4x)dx=?\left( 1 \right) \to \int {\left( {x \cdot {e^{4x}}} \right)dx = ?}
(2)udv=uvvdu\left( 2 \right) \to \int {u \cdot dv = uv - \int {vdu} }
We get,

u=x dv=e4xdx   u = x \\\ dv = {e^{4x}}dx \;

To solve the given question we have to find the value of dudu and vv from the above two equations.
Let’s find dudu ,
Here u=xu = x
To find dudu we would differentiate the above equation. So, we get
dudx=1\dfrac{{du}}{{dx}} = 1
So, we get
du=dx(3)du = dx \to \left( 3 \right)
Let’s find vv
Here dv=e4xdxdv = {e^{4x}}dx
To find vv we would integrate the above equation. So, we get
dv=e4xdx\int {dv} = \int {{e^{4x}}dx}
So, we get
v=e4x4(4)v = \dfrac{{{e^{4x}}}}{4} \to \left( 4 \right)
(Here we use the formula
enx=enxn\int {{e^{nx}}} = \dfrac{{{e^{nx}}}}{n} )
Let’s substitute u=x,du=dx,v=e4x4u = x,du = dx,v = \dfrac{{{e^{4x}}}}{4} and dv=e4xdxdv = {e^{4x}}dx in the equation (2)\left( 2 \right) , we get
(2)udv=uvvdu\left( 2 \right) \to \int {u \cdot dv = uv - \int {vdu} }
xe4xdx=(x)(e4x4)e4x4dx\int {x \cdot {e^{4x}}} dx = \left( x \right)\left( {\dfrac{{{e^{4x}}}}{4}} \right) - \int {\dfrac{{{e^{4x}}}}{4}} dx
xe4xdx=xe4x4(e4x4×4+c)\Rightarrow \int {x \cdot {e^{4x}}} dx = \dfrac{{x \cdot {e^{4x}}}}{4} - \left( {\dfrac{{{e^{4x}}}}{{4 \times 4}} + c} \right)
(Here e4x4=e4x4×4\int {\dfrac{{{e^{4x}}}}{4}} = \dfrac{{{e^{4x}}}}{{4 \times 4}} was defined by the formula enx=enxn\int {{e^{nx}}} = \int {\dfrac{{{e^{nx}}}}{n}} )
So, we get
xe4xdx=xe4x4(e4x4×4+c)\Rightarrow \int {x \cdot {e^{4x}}} dx = \dfrac{{x \cdot {e^{4x}}}}{4} - \left( {\dfrac{{{e^{4x}}}}{{4 \times 4}} + c} \right)
Here we have e4x4\dfrac{{{e^{4x}}}}{4} is common in both terms in the RHS of the above equation. So, let’s take the mentioned term as a common term. So, we get
xe4xdx=e4x4(x14+c)\Rightarrow \int {x \cdot {e^{4x}}} dx = \dfrac{{{e^{4x}}}}{4}\left( {x - \dfrac{1}{4} + c} \right)
We know that,
e4x4c=c\dfrac{{{e^{4x}}}}{4} \cdot c = c , because cc is a constant term.
So, we get
xe4xdx=e4x4(x14)+c(5)\Rightarrow \int {x \cdot {e^{4x}}} dx = \dfrac{{{e^{4x}}}}{4}\left( {x - \dfrac{1}{4}} \right) + c \to \left( 5 \right)
We know that,
abc=acbca - \dfrac{b}{c} = \dfrac{{ac - b}}{c}
By using this formula, we get
x14=4x14x - \dfrac{1}{4} = \dfrac{{4x - 1}}{4}
Let’s substitute this value in the equation (5)\left( 5 \right) , we get
xe4xdx=e4x4(4x14)+c\int {x \cdot {e^{4x}}} dx = \dfrac{{{e^{4x}}}}{4}\left( {\dfrac{{4x - 1}}{4}} \right) + c
Let’s multiply the denominator 4×4=164 \times 4 = 16
So, we get
xe4xdx=e4x16(4x1)+c\Rightarrow \int {x \cdot {e^{4x}}} dx = \dfrac{{{e^{4x}}}}{{16}}\left( {4x - 1} \right) + c
So, the final answer is,
xe4xdx=116e4x(4x1)+c\int {x \cdot {e^{4x}}} dx = \dfrac{1}{{16}}{e^{4x}} \cdot \left( {4x - 1} \right) + c
So, the correct answer is “ xe4xdx=116e4x(4x1)+c\int {x \cdot {e^{4x}}} dx = \dfrac{1}{{16}}{e^{4x}} \cdot \left( {4x - 1} \right) + c ”.

Note : Remember the basic formulae involved in the integration process. Note that if we want to find vv from dvdv , we would integrate the term dvdv . If we want to find dvdv from vv , we would differentiate the term vv . Also, remember the algebraic formulae to convert the mixed fraction terms into simple fraction terms.