Solveeit Logo

Question

Question: How do you implicitly differentiate \[\sin x + \cos y = \sin x\cos y\] ?...

How do you implicitly differentiate sinx+cosy=sinxcosy\sin x + \cos y = \sin x\cos y ?

Explanation

Solution

Hint : Differentiation calculates the rate of change of a given quantity. Implicit function definition conveys when we are not able to isolate the dependent variable in a differential equation becomes an implicit function. Both the dependent variable and independent variables are present in this type of function.

Complete step-by-step answer :
Given, sinx+cosy=sinxcosy\sin x + \cos y = \sin x\cos y .
Doing implicit differentiation, applying differentiation on both side,
ddx(sinx+cosy)=ddx(sinxcosy)\Rightarrow \dfrac{d}{{dx}}\left( {\sin x + \cos y} \right) = \dfrac{d}{{dx}}\left( {\sin x\cos y} \right)
Applying sum or difference rule on the left hand side of the differential equation and Product rule on the right hand side of the differential equation we have,
ddx(sinx)+ddx(cosy)=ddx(sinxcosy)\Rightarrow \dfrac{d}{{dx}}\left( {\sin x} \right) + \dfrac{d}{{dx}}\left( {\cos y} \right) = \dfrac{d}{{dx}}\left( {\sin x\cos y} \right)
Product rule we have f(x)=u(x).v(x)+u(x).v(x)f'(x) = u'(x).v(x) + u(x).v'(x) . Where u(x)=sinxu(x) = \sin x and v(x)=cosyv(x) = \cos y .
ddx(sinx)+ddx(cosy)=ddx(sinx)cosy+sinxddx(cosy)\Rightarrow \dfrac{d}{{dx}}\left( {\sin x} \right) + \dfrac{d}{{dx}}\left( {\cos y} \right) = \dfrac{d}{{dx}}(\sin x)\cos y + \sin x\dfrac{d}{{dx}}(\cos y)
We know that, ddx(sinx)=cosx\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x and ddx(cosy)=sinydydx\dfrac{d}{{dx}}(\cos y) = - \sin y\dfrac{{dy}}{{dx}} . Substituting this we have,
cosx+(sinydydx)=cosxcosy+sinx(sinydydx)\Rightarrow \cos x + \left( { - \sin y\dfrac{{dy}}{{dx}}} \right) = \cos x\cos y + \sin x\left( { - \sin y\dfrac{{dy}}{{dx}}} \right)
cosxsinydydx=cosxcosysinysinxdydx\Rightarrow \cos x - \sin y\dfrac{{dy}}{{dx}} = \cos x\cos y - \sin y\sin x\dfrac{{dy}}{{dx}} .
Regrouping dydx\dfrac{{dy}}{{dx}} terms we get,
sinysinxdydxsinydydx=cosxcosycosx\Rightarrow \sin y\sin x\dfrac{{dy}}{{dx}} - \sin y\dfrac{{dy}}{{dx}} = \cos x\cos y - \cos x
Taking dydx\dfrac{{dy}}{{dx}} common on the left hand side of the equation,
dydx(sinysinxsiny)=cosxcosycosx\Rightarrow \dfrac{{dy}}{{dx}}\left( {\sin y\sin x - \sin y} \right) = \cos x\cos y - \cos x
Now dividing (sinysinxsiny)\left( {\sin y\sin x - \sin y} \right) on both sides of the problem we have,
dydx=cosxcosycosxsinysinxsiny\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\cos x\cos y - \cos x}}{{\sin y\sin x - \sin y}}
Taking cosx\cos x common in the numerator and taking siny\sin y common in the denominator term we have,
dydx=cosx(cosy1)siny(sinx1)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\cos x(\cos y - 1)}}{{\sin y(\sin x - 1)}} . This is the required answer.
So, the correct answer is “ dydx=cosx(cosy1)siny(sinx1) \dfrac{{dy}}{{dx}} = \dfrac{{\cos x(\cos y - 1)}}{{\sin y(\sin x - 1)}} ”.

Note : We have different types of differentiation rules.
Sum or difference rule: when the function is the sum or difference of two functions, the derivative is the sum or difference of derivative of each function. i.e.,
f(x)=u(x)±v(x)f(x) = u(x) \pm v(x) then f(x)=u(x)±v(x)f'(x) = u'(x) \pm v'(x) .
Product rule: when f(x) is the product of two function that is f(x)=u(x).v(x)f(x) = u(x).v(x) then f(x)=u(x).v(x)+u(x).v(x)f'(x) = u'(x).v(x) + u(x).v'(x) .
Quotient rule: , if the two functions f(x)f(x) and g(x)g(x) are differentiable then the quotient is differentiable and (f(x)g(x))1=f(x)g(x)f(x)g(x)(g(x))2{\left( {\dfrac{{f(x)}}{{g(x)}}} \right)^1} = \dfrac{{f'(x)g(x) - f(x)g'(x)}}{{{{\left( {g(x)} \right)}^2}}} .
We use this rule depending on the given problem. Careful in the differentiation a function f(y) with respect to x. we will have ddx(f(y))=f(y)dydx\dfrac{d}{{dx}}(f(y)) = f'(y)\dfrac{{dy}}{{dx}} .