Solveeit Logo

Question

Question: How do you identify the conic \(4{x^2} + 8{y^2} - 8x - 24 = 4\) is, if any and if the equation does ...

How do you identify the conic 4x2+8y28x24=44{x^2} + 8{y^2} - 8x - 24 = 4 is, if any and if the equation does represent a conic, state its vertex or center?

Explanation

Solution

To check whether the given equation is that of a conic or not we compare it with the general form of the conic given by, ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0. An equation of a conic is a second degree equation, i.e. both aa and bb cannot be 00 at the same time. Once we establish that given equation is that of a conic we will use the discriminant method to check for which conic is represented by the given equation using the following table:

ConditionType of conic
Δ=0\Delta = 0Pair of straight lines
Δ0\Delta \ne 0, andD<0D < 0, anda=ba = b, andh=0h = 0Circle
Δ0\Delta \ne 0, andD<0D < 0, andaba \ne bEllipse
Δ0\Delta \ne 0, andD=0D = 0Parabola
Δ0\Delta \ne 0, andD>0D > 0Hyperbola

where, determinant Δ=abc+2fghaf2bg2ch2\Delta = abc + 2fgh - a{f^2} - b{g^2} - c{h^2}
discriminant D=h2abD = {h^2} - ab

Complete step by step solution:
The given equation is 4x2+8y28x24=44{x^2} + 8{y^2} - 8x - 24 = 4
We shift all the terms to the LHS,
4x2+8y28x244=0 4x2+8y28x28=0  4{x^2} + 8{y^2} - 8x - 24 - 4 = 0 \\\ \Rightarrow 4{x^2} + 8{y^2} - 8x - 28 = 0 \\\
On comparing with the general form of the conic given by,
ax2+2hxy+by2+2gx+2fy+c=0a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0
We see that,
a=4,b=8,c=28,g=4a = 4,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} b = 8,{\kern 1pt} {\kern 1pt} {\kern 1pt} c = - 28,{\kern 1pt} {\kern 1pt} {\kern 1pt} g = - 4 and h=f=0h = f = 0
Since, the equation is a second-degree equation, and both aa and bb are not 00, we can say that this equation represents a conic.
Now we have to check for which conic is represented by this equation. For this we will use the discriminant method and use the above given table.
First we calculate Δ=abc+2fghaf2bg2ch2\Delta = abc + 2fgh - a{f^2} - b{g^2} - c{h^2},
Δ=(4×8×28)+(2×0×4×0)(4×0×0)(8×4×4)(28×0×0) Δ=(896)+001280 Δ=896128=1024  \Delta = (4 \times 8 \times - 28) + (2 \times 0 \times - 4 \times 0) - (4 \times 0 \times 0) - (8 \times - 4 \times - 4) - ( - 28 \times 0 \times 0) \\\ \Rightarrow \Delta = ( - 896) + 0 - 0 - 128 - 0 \\\ \Rightarrow \Delta = - 896 - 128 = - 1024 \\\
Thus, Δ0\Delta \ne 0.
Now we calculate D=h2abD = {h^2} - ab,
D=02(4×8) D=32  D = {0^2} - (4 \times 8) \\\ \Rightarrow D = - 32 \\\
Thus, D<0D < 0.
So, from the table we see that the given equation can be that of a circle or an ellipse.
We further compare aa and bb. Since, a=4a = 4 and b=8b = 8, we have aba \ne b.
The given equation satisfies the following conditions:
Δ0\Delta \ne 0, D<0D < 0, and aba \ne b.
Thus, from the table we see that the given equation satisfies all the conditions of that of an ellipse.
To get the vertices and center we rewrite the equation in the standard form of the ellipse, i.e. (xα)2a2+(yβ)2b2=1\dfrac{{{{(x - \alpha )}^2}}}{{{a^2}}} + \dfrac{{{{(y - \beta )}^2}}}{{{b^2}}} = 1.

4x2+8y28x24=4 4x2+8y28x244=0 4x2+8y28x28=0 4(x2+2y22x7)=0 x2+2y22x7=0 x2+2y22x7+11=0 (x22x+1)+(2y2)71=0 (x1)2+(2y2)8=0 (x1)2+(2y2)=8 (x1)28+y24=1 (x1)28+(y0)24=1  4{x^2} + 8{y^2} - 8x - 24 = 4 \\\ \Rightarrow 4{x^2} + 8{y^2} - 8x - 24 - 4 = 0 \\\ \Rightarrow 4{x^2} + 8{y^2} - 8x - 28 = 0 \\\ \Rightarrow 4({x^2} + 2{y^2} - 2x - 7) = 0 \\\ \Rightarrow {x^2} + 2{y^2} - 2x - 7 = 0 \\\ \Rightarrow {x^2} + 2{y^2} - 2x - 7 + 1 - 1 = 0 \\\ \Rightarrow ({x^2} - 2x + 1) + (2{y^2}) - 7 - 1 = 0 \\\ \Rightarrow {(x - 1)^2} + (2{y^2}) - 8 = 0 \\\ \Rightarrow {(x - 1)^2} + (2{y^2}) = 8 \\\ \Rightarrow \dfrac{{{{(x - 1)}^2}}}{8} + \dfrac{{{y^2}}}{4} = 1 \\\ \Rightarrow \dfrac{{{{(x - 1)}^2}}}{8} + \dfrac{{{{(y - 0)}^2}}}{4} = 1 \\\

On comparing with standard form of the ellipse (xα)2a2+(yβ)2b2=1\dfrac{{{{(x - \alpha )}^2}}}{{{a^2}}} + \dfrac{{{{(y - \beta )}^2}}}{{{b^2}}} = 1, we get,
α=1,β=0\alpha = 1,{\kern 1pt} {\kern 1pt} {\kern 1pt} \beta = 0
a2=8a=22{a^2} = 8 \Rightarrow a = 2\sqrt 2
b2=4b=2{b^2} = 4 \Rightarrow b = 2
Center of the ellipse: (α,β)=(1,0)(\alpha ,\beta ) = (1,0)
Vertices:

(α+a,β),(αa,β),(α,β+b),and(α,βb) =(1+22,0),(122,0),(1,2),and(1,2)  (\alpha + a,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \beta ){\kern 1pt} {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} (\alpha - a,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \beta ){\kern 1pt} {\kern 1pt} {\kern 1pt}, (\alpha, {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \beta + b){\kern 1pt} {\kern 1pt} {\kern 1pt}, {\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} (\alpha, {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \beta - b) \\\ = {\kern 1pt} {\kern 1pt} {\kern 1pt} (1 + 2\sqrt 2 ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0){\kern 1pt} {\kern 1pt} {\kern 1pt}, {\kern 1pt} {\kern 1pt} {\kern 1pt} (1 - 2\sqrt 2 ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0){\kern 1pt} {\kern 1pt} {\kern 1pt} ,(1,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 2){\kern 1pt} {\kern 1pt} {\kern 1pt} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} (1,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - 2) \\\

Note:
We can also use a short method to identify the type of conic once we establish that it is an equation of a conic and Δ0\Delta \ne 0 . In the general form of equation,

  1. if a=b0a = b \ne 0, it is an equation of a circle.
  2. if aba \ne b (both aa and bb not equal to 00) and both of them are positive, it is an equation of an ellipse.
  3. if aba \ne b (both aa and bb not equal to 00) and exactly one of them is negative, it is an equation of a hyperbola.
  4. if a=0a = 0 or b=0b = 0 (both aa and bb not equal to 00 at the same time), it is an equation of a parabola.