Solveeit Logo

Question

Question: How do you graph \(y=\sin x\) and \(y=\cos x\) ....

How do you graph y=sinxy=\sin x and y=cosxy=\cos x .

Explanation

Solution

To draw the graph of y=sinxy=\sin x , we have to consider different values of x and find the corresponding values of y. We have consider x=0,±π2,±π,±3π2,±2πx=0,\pm \dfrac{\pi }{2},\pm \pi ,\pm \dfrac{3\pi }{2},\pm 2\pi and find the corresponding values of y. To draw the graph of y=cosxy=\cos x , we will do the similar procedure.

Complete step by step solution:
We have to graph y=sinxy=\sin x and y=cosxy=\cos x . Let us first consider y=sinxy=\sin x . We have to consider different values of x and find the corresponding values of y.
Let us consider x=0x=0 . We have to substitute the value of x in y=sinxy=\sin x .
y=sin0=0\Rightarrow y=\sin 0=0
Let us consider x=π2x=\dfrac{\pi }{2} .
y=sinπ2=1\Rightarrow y=\sin \dfrac{\pi }{2}=1
We have to consider x=πx=\pi .
y=sinπ=0\Rightarrow y=\sin \pi =0
Let us consider x=3π2x=\dfrac{3\pi }{2} .
y=sin3π2=1\Rightarrow y=\sin \dfrac{3\pi }{2}=-1
We have to consider x=2πx=2\pi .
y=sin2π=0\Rightarrow y=\sin 2\pi =0
Now, let us consider the negative values. So when x=π2x=-\dfrac{\pi }{2}
y=sin(π2)\Rightarrow y=\sin \left( -\dfrac{\pi }{2} \right)
We know that sin(θ)=sinθ\sin \left( -\theta \right)=-\sin \theta .
y=sin(π2)=1\Rightarrow y=-\sin \left( \dfrac{\pi }{2} \right)=-1
We have to consider x=πx=-\pi .
y=sin(π)=0\Rightarrow y=\sin \left( -\pi \right)=0
Let us consider x=3π2x=-\dfrac{3\pi }{2} .
y=sin(3π2)=sin(3π2)=1\Rightarrow y=\sin \left( -\dfrac{3\pi }{2} \right)=-\sin \left( \dfrac{3\pi }{2} \right)=1
We have to consider x=2πx=-2\pi .
y=sin(2π)=0\Rightarrow y=\sin \left( -2\pi \right)=0
Let us tabulate these values.

xy=sinxy=\sin x
00
π2\dfrac{\pi }{2}1
π\pi 0
3π2\dfrac{3\pi }{2}-1
2π2\pi 0
π2-\dfrac{\pi }{2}-1
π-\pi 0
3π2-\dfrac{3\pi }{2}1
2π-2\pi 0

Now, let us plot the graph. Firstly, we have to plot the points in the graph. We have to convert π\pi into its numerical form, that is, 3.14 and plot the corresponding points. Then, we have to join the points as a curve. The graph of y=sinxy=\sin x is shown below.

Now, let us consider y=cosxy=\cos x . Similar to the previous function, we will have to find the points to plot.
Let us consider x=0x=0 . We have to substitute the value of x in y=cosxy=\cos x .
y=cos0=1\Rightarrow y=\cos 0=1
Let us consider x=π2x=\dfrac{\pi }{2} .
y=cosπ2=0\Rightarrow y=\cos \dfrac{\pi }{2}=0
We have to consider x=πx=\pi .
y=cosπ=1\Rightarrow y=\cos \pi =-1
Let us consider x=3π2x=\dfrac{3\pi }{2} .
y=cos3π2=0\Rightarrow y=\cos \dfrac{3\pi }{2}=0
We have to consider x=2πx=2\pi .
y=cos2π=1\Rightarrow y=\cos 2\pi =1
Now, let us consider the negative values. So when x=π2x=-\dfrac{\pi }{2}
y=cos(π2)\Rightarrow y=\cos \left( -\dfrac{\pi }{2} \right)
We know that cos(θ)=cosθ\cos \left( -\theta \right)=\cos \theta .
y=cos(π2)=0\Rightarrow y=\cos \left( \dfrac{\pi }{2} \right)=0
We have to consider x=πx=-\pi .
y=cos(π)=cosπ=1\Rightarrow y=\cos \left( -\pi \right)=\cos \pi =-1
Let us consider x=3π2x=-\dfrac{3\pi }{2} .
y=cos(3π2)=cos(3π2)=0\Rightarrow y=\cos \left( -\dfrac{3\pi }{2} \right)=\cos \left( \dfrac{3\pi }{2} \right)=0
We have to consider x=2πx=-2\pi .
y=cos(2π)=cos(2π)=1\Rightarrow y=\cos \left( -2\pi \right)=\cos \left( 2\pi \right)=1
Let us tabulate these values.

xy=sinxy=\sin x
0-1
π2\dfrac{\pi }{2}0
π\pi -1
3π2\dfrac{3\pi }{2}0
2π2\pi 1
π2-\dfrac{\pi }{2}0
π-\pi -1
3π2-\dfrac{3\pi }{2}0
2π-2\pi 1

Now, let us plot the graph.

Note: We can also consider other angles also. Students have a chance of making mistakes by considering sin(θ)=sinθ\sin \left( -\theta \right)=\sin \theta and cos(θ)=cosθ\cos \left( -\theta \right)=-\cos \theta . We have considered the values of x to be x=0,±π2,±π,±3π2,±2πx=0,\pm \dfrac{\pi }{2},\pm \pi ,\pm \dfrac{3\pi }{2},\pm 2\pi as these values are easy to be plotted. We can find the domain and range of y=sinxy=\sin x and y=cosxy=\cos x . We know that the domain of a function is the complete set of possible values of the independent variable. Hence, the domain of sin x and cos x is (,)\left( -\infty ,\infty \right) . We know that range of a