Solveeit Logo

Question

Question: How do you graph \[y = \sin 2x\]?...

How do you graph y=sin2xy = \sin 2x?

Explanation

Solution

We need to graph the given function. We will use the domain and some values of xx lying between π- \pi and π\pi to find some values of yy. Then, we will use the values of yy to find the coordinates of points lying on the required graph, and use the coordinates obtained to graph the function.

Complete step-by-step solution:
The domain of all sine functions is the set of all real numbers.
Thus, the domain of the function y=sin2xy = \sin 2x is given by \left\\{ {x:x \in R} \right\\}. This means that the function y=sin2xy = \sin 2x exists for all values of xx, and is a continuous function.
Now, we will find some values of yy for some values of xx lying between π- \pi and π\pi .
Substituting x=πx = - \pi in the function y=sin2xy = \sin 2x, we get
y=sin(2(π)) y=sin(2π)\begin{array}{l}y = \sin \left( {2\left( { - \pi } \right)} \right)\\\ \Rightarrow y = \sin \left( { - 2\pi } \right)\end{array}
The sine of an angle x - x can be written as sin(x)=sinx\sin \left( { - x} \right) = - \sin x.
Simplifying the expression, we get
y=sin(2π) y=0\begin{array}{l} \Rightarrow y = - \sin \left( {2\pi } \right)\\\ \Rightarrow y = 0\end{array}
Substituting x=3π4x = - \dfrac{{3\pi }}{4} in the function y=sin2xy = \sin 2x, we get
y=sin(2(3π4)) y=sin(3π2)\begin{array}{l} \Rightarrow y = \sin \left( {2\left( { - \dfrac{{3\pi }}{4}} \right)} \right)\\\ \Rightarrow y = \sin \left( { - \dfrac{{3\pi }}{2}} \right)\end{array}
As sine function is an odd function, so we can writ above equation as
y=sin(3π2)\Rightarrow y = - \sin \left( {\dfrac{{3\pi }}{2}} \right)
Substituting the value of the angle, we get
y=1\Rightarrow y = 1
Substituting x=π2x = - \dfrac{\pi }{2} in the function y=sin2xy = \sin 2x, we get
y=sin(2(π2)) y=sin(π)\begin{array}{l} \Rightarrow y = \sin \left( {2\left( { - \dfrac{\pi }{2}} \right)} \right)\\\ \Rightarrow y = \sin \left( { - \pi } \right)\end{array}
As sine function is an odd function, so we can writ above equation as
y=sin(π) y=0\begin{array}{l} \Rightarrow y = - \sin \left( \pi \right)\\\ \Rightarrow y = 0\end{array}
Substituting x=π4x = - \dfrac{\pi }{4} in the function y=sin2xy = \sin 2x, we get
y=sin(2(π4)) y=sin(π2)\begin{array}{l} \Rightarrow y = \sin \left( {2\left( { - \dfrac{\pi }{4}} \right)} \right)\\\ \Rightarrow y = \sin \left( { - \dfrac{\pi }{2}} \right)\end{array}
Substituting the value of the angle, we get
y=1\Rightarrow y = - 1
Substituting x=0x = 0 in the function y=sin2xy = \sin 2x, we get
y=sin(2(0)) y=sin(0)\begin{array}{l} \Rightarrow y = \sin \left( {2\left( 0 \right)} \right)\\\ \Rightarrow y = \sin \left( 0 \right)\end{array}
Substituting the value of the angle, we get
y=0\Rightarrow y = 0
Substituting x=π4x = \dfrac{\pi }{4} in the function y=sin2xy = \sin 2x, we get
y=sin(2(π4)) y=sin(π2)\begin{array}{l} \Rightarrow y = \sin \left( {2\left( {\dfrac{\pi }{4}} \right)} \right)\\\ \Rightarrow y = \sin \left( {\dfrac{\pi }{2}} \right)\end{array}
Substituting the value of the angle, we get
y=1\Rightarrow y = 1
Substituting x=π2x = \dfrac{\pi }{2} in the function y=sin2xy = \sin 2x, we get
y=sin(2(π2)) y=sin(π)\begin{array}{l} \Rightarrow y = \sin \left( {2\left( {\dfrac{\pi }{2}} \right)} \right)\\\ \Rightarrow y = \sin \left( \pi \right)\end{array}
Substituting the value of the angle, we get
y=0\Rightarrow y = 0
Substituting x=3π4x = \dfrac{{3\pi }}{4} in the function y=sin2xy = \sin 2x, we get
y=sin(2(3π4)) y=sin(3π2)\begin{array}{l} \Rightarrow y = \sin \left( {2\left( {\dfrac{{3\pi }}{4}} \right)} \right)\\\ \Rightarrow y = \sin \left( {\dfrac{{3\pi }}{2}} \right)\end{array}
Substituting the value of the angle, we get
y=1\Rightarrow y = - 1
Substituting x=πx = \pi in the function y=sin2xy = \sin 2x, we get
y=sin(2(π)) y=sin(2π)\begin{array}{l} \Rightarrow y = \sin \left( {2\left( \pi \right)} \right)\\\ \Rightarrow y = \sin \left( {2\pi } \right)\end{array}
Substituting the value of the angle, we get
y=0\Rightarrow y = 0
Arranging the values of xx and yy in a table and writing the coordinates, we get

xxyy(x,y)\left( {x,y} \right)
π- \pi00(π,0)\left( { - \pi ,0} \right)
3π4 - \dfrac{{3\pi }}{4}11(3π4,1)\left( { - \dfrac{{3\pi }}{4},1} \right)
π2 - \dfrac{\pi }{2}00(π2,0)\left( { - \dfrac{\pi }{2},0} \right)
π4 - \dfrac{\pi }{4}1 - 1(π4,1)\left( { - \dfrac{\pi }{4}, - 1} \right)
0000(0,0)\left( {0,0} \right)
π4\dfrac{\pi }{4}11(π4,1)\left( {\dfrac{\pi }{4},1} \right)
π2\dfrac{\pi }{2}00(π2,0)\left( {\dfrac{\pi }{2},0} \right)
3π4\dfrac{{3\pi }}{4}1 - 1(3π4,1)\left( {\dfrac{{3\pi }}{4}, - 1} \right)
π\pi 00(π,0)\left( {\pi ,0} \right)

Now, we will use the coordinates of the points to plot the required graph.
Plotting the graphs and joining the curve, we get

This is the required graph of the function y=sin2xy = \sin 2x.

Note:
The period of a function y=sinkxy = \sin kx is given by 2πk\dfrac{{2\pi }}{k}. The period of the function y=sin2xy = \sin 2x is 2π2=π\dfrac{{2\pi }}{2} = \pi . This means that the graph of y=sin2xy = \sin 2x will repeat for every π\pi distance on the xx-axis. It can be observed that the pattern and shape of the graph of y=sin2xy = \sin 2x is the same from π- \pi to 0, and from 0 to π\pi . The range of the sine function is from 1 - 1 to 1.