Solveeit Logo

Question

Question: How do you graph \[y = {\left( {\dfrac{1}{3}} \right)^x} + 1?\]...

How do you graph y=(13)x+1?y = {\left( {\dfrac{1}{3}} \right)^x} + 1?

Explanation

Solution

First, understand the given equation. Apply the xxvalue in the given equation and find the corresponding yy value. We get a coordinate point(a,b)\left( {a,b} \right) on the given equation. Now plot the point in the graph and connect it. The equation to find the graph is a strictly decreasing and unbounded graph. The graph lies above the xx axis.

Complete answer:
Given equation is y=(13)x+1y = {\left( {\dfrac{1}{3}} \right)^x} + 1
This equation is exponential. In this equation to we draw a graph.
Assume that,
x=3x = - 3apply the equation yy
y=(13)3+1y = {\left( {\dfrac{1}{3}} \right)^{ - 3}} + 1
The first13\dfrac{1}{3} is a rational number. That number power value is a negative number generally (1a)b{\left( {\dfrac{1}{a}} \right)^{ - b}}
So that we will give power separately numerator and denominator. It means

=(13)3+1 =(1)3(3)3+1 = {\left( {\dfrac{1}{3}} \right)^{ - 3}} + 1 \\\ = \dfrac{{{{\left( 1 \right)}^{ - 3}}}}{{{{\left( 3 \right)}^{ - 3}}}} + 1 \\\

In 11 power any non-zero number the value is

(1)a,a0 (1)a=1 {\left( 1 \right)^a},\,a \ne 0 \\\ {\left( 1 \right)^a} = 1 \\\

So that (1)1=1{\left( 1 \right)^{ - 1}} = 1 and denominator (3)3,{\left( 3 \right)^{ - 3}},
A non-zero number has a power value that is a negative number. We change to that nonzero in the denominator.
It means (a)b{\left( a \right)^{ - b}} is a change to 1ab\dfrac{1}{{{a^b}}}
So that (3)3=133{\left( 3 \right)^{ - 3}} = \dfrac{1}{{{3^3}}}
Now the negative power value is converted to a positive power value. Now easily get the three power three is 2727
So that,

=133 =127 = \dfrac{1}{{{3^3}}} \\\ = \dfrac{1}{{27}} \\\

and x=3x = - 3we get y=27+1y = 27 + 1
because apply 11 over 127\dfrac{1}{{27}} is 2727

=1+27 y=28 = 1 + 27 \\\ y = 28 \\\

So the point is (3,28)\left( { - 3,28} \right)
x=2x = - 2 apply the equation yy

y=(13)2+1 =(13)2+1 =(1)2(3)2+1 y = {\left( {\dfrac{1}{3}} \right)^{ - 2}} + 1 \\\ = {\left( {\dfrac{1}{3}} \right)^{ - 2}} + 1 \\\ = \dfrac{{{{\left( 1 \right)}^{ - 2}}}}{{{{\left( 3 \right)}^{ - 2}}}} + 1 \\\

So that (3)2=132{\left( 3 \right)^{ - 2}} = \dfrac{1}{{{3^2}}}
Now the negative power value is converted to a positive power value. Now easily get the three power two is 99
So that,

=132 =19 = \dfrac{1}{{{3^2}}} \\\ = \dfrac{1}{9} \\\

and x=2x = - 2apply to y=9+1y = 9 + 1
y=10y = 10
So the point is (2,10)\left( { - 2,10} \right)
x=1x = - 1 apply equation yy

y=(13)1+1 =(13)1+1 =(1)1(3)1+1 y = {\left( {\dfrac{1}{3}} \right)^{ - 1}} + 1 \\\ = {\left( {\dfrac{1}{3}} \right)^{ - 1}} + 1 \\\ = \dfrac{{{{\left( 1 \right)}^{ - 1}}}}{{{{\left( 3 \right)}^{ - 1}}}} + 1 \\\

So that (3)1=131{\left( 3 \right)^{ - 1}} = \dfrac{1}{{{3^1}}}
Now the negative power value is converted to a positive power value. Now easily get the three power one is 33
So that,

=131 =13 = \dfrac{1}{{{3^1}}} \\\ = \dfrac{1}{3} \\\

and x=1x = - 1we get y=3+1y = 3 + 1
y=4y = 4
So the point is (1,4)\left( { - 1,4} \right)
x=0x = 0 apply equation yy

y=(13)0+1 =(13)0+1 =(1)0(3)0+1 y = {\left( {\dfrac{1}{3}} \right)^0} + 1 \\\ = {\left( {\dfrac{1}{3}} \right)^0} + 1 \\\ = \dfrac{{{{\left( 1 \right)}^0}}}{{{{\left( 3 \right)}^0}}} + 1 \\\

So that (3)0=130{\left( 3 \right)^0} = \dfrac{1}{{{3^0}}}
Now easily get any constant number power zero is equal to one.
So that,

(1)0(3)0=11 =1 \dfrac{{{{\left( 1 \right)}^0}}}{{{{\left( 3 \right)}^0}}} = \dfrac{1}{1} \\\ = 1 \\\

and x=0x = 0we get y=1+1y = 1 + 1

=1+1 y=2 = 1 + 1 \\\ y = 2 \\\

So the point is (0,2)\left( {0,2} \right)
x=1x = 1 apply equation yy

y=(13)1+1 =(13)1+1 =(1)1(3)1+1 y = {\left( {\dfrac{1}{3}} \right)^1} + 1 \\\ = {\left( {\dfrac{1}{3}} \right)^1} + 1 \\\ = \dfrac{{{{\left( 1 \right)}^1}}}{{{{\left( 3 \right)}^1}}} + 1 \\\ =1+33 y=43 = \dfrac{{1 + 3}}{3} \\\ y = \dfrac{4}{3} \\\

So the point is (1,43)\left( {1,\dfrac{4}{3}} \right)
x=2x = 2 apply the equation yy

y=(13)2+1 =(1)2(3)2+1 y = {\left( {\dfrac{1}{3}} \right)^2} + 1 \\\ = \dfrac{{{{\left( 1 \right)}^2}}}{{{{\left( 3 \right)}^2}}} + 1 \\\ =1+99 y=109 = \dfrac{{1 + 9}}{9} \\\ y = \dfrac{{10}}{9} \\\

So the point is (2,109)\left( {2,\dfrac{{10}}{9}} \right)
x=3x = 3 apply equation yy

y=(13)3+1 =(1)3(3)3+1 y = {\left( {\dfrac{1}{3}} \right)^3} + 1 \\\ = \dfrac{{{{\left( 1 \right)}^3}}}{{{{\left( 3 \right)}^3}}} + 1 \\\ =1+2727 y=2827 = \dfrac{{1 + 27}}{{27}} \\\ y = \dfrac{{28}}{{27}} \\\

So the point is (3,2827)\left( {3,\dfrac{{28}}{{27}}} \right)
Now we mention the values in tabular format,

xx3 - 32 - 21 - 100112233
yy28281010442243\dfrac{4}{3}109\dfrac{{10}}{9}2827\dfrac{{28}}{{27}}

The Points are, (3,28),(2,10),(1,4),(0,2),(1,43),(2,109),(3,2827)( - 3,28),( - 2,10),( - 1,4),(0,2),(1,\dfrac{4}{3}),(2,\dfrac{{10}}{9}),(3,\dfrac{{28}}{{27}})
Then we get a graph of y=(13)x+1y = {\left( {\dfrac{1}{3}} \right)^x} + 1
The graph is given below

Note: Given problem is an exponential equation. The property of the exponential equation is unbounded. In ax{a^x} and ax{a^{ - x}} are the two forms of the exponent series. In ax{a^x} and ax{a^{ - x}} are strictly inequality forms. And that is strictly decreasing also. In the given equation the value yyis always positive. Carefully labeled the point in the graph.