Solveeit Logo

Question

Question: How do you graph \(y = \cos 2x\)?...

How do you graph y=cos2xy = \cos 2x?

Explanation

Solution

First find amplitude, period, phase shift, and vertical shift for given periodic function. Select a few points to graph. Find the point at x=0x = 0, x=π4x = \dfrac{\pi }{4}, x=π2x = \dfrac{\pi }{2}, x=3π4x = \dfrac{{3\pi }}{4}, x=πx = \pi . List the points in a table. Then graph the trigonometric function using the amplitude, period, phase shift, vertical shift and the points.

Formula used:
Period: The period goes from one peak to the next (or from any point to the next matching point).
Amplitude: The amplitude is the height from the center line to the peak (or to the trough). Or we can measure the height from highest to lowest points and divide them by 22.
Phase Shift: The phase shift is how far the function is shifted horizontally from the usual position.
Vertical Shift: The vertical shift is how far the function is shifted vertically from the usual position.

Complete step by step answer:
Use the form acos(bxc)+da\cos \left( {bx - c} \right) + d to find the amplitude, period, phase shift, and vertical shift.
Compare the given equation y=cos2xy = \cos 2xwith acos(bxc)+da\cos \left( {bx - c} \right) + d and find variables a,b,ca,b,c and dd.
a=1a = 1, b=2b = 2, c=0c = 0 and d=0d = 0.
Find the amplitude a\left| a \right|.
Here, a=1a = 1.
Amplitude, a=1\left| a \right| = 1.
The period of the function can be calculated using 2πb\dfrac{{2\pi }}{{\left| b \right|}}.
Period: 2πb\dfrac{{2\pi }}{{\left| b \right|}}
Replace bb with 22 in the formula for period.
Period: 2π2\dfrac{{2\pi }}{{\left| 2 \right|}}
The absolute value is the distance between a number and zero.
The distance between 00 and 22 is22.
Period: 2π2\dfrac{{2\pi }}{2}
Cancel the common factor of 22.
Period: π\dfrac{{\not{2}\pi }}{{\not{2}}}
Divide π\pi by 11.
Period: π\pi
Find the phase shift using the formula cb\dfrac{c}{b}.
The phase shift of the function can be calculated from cb\dfrac{c}{b}.
Phase Shift: cb\dfrac{c}{b}
Replace the values of cc and bb in the equation for phase shift.
Phase Shift: 02\dfrac{0}{2}
Divide 00 by 22.
Phase Shift: 00
Find the vertical shift dd.
Vertical Shift: 00
Now we have to List the properties of the trigonometric function.
Amplitude: 11
Period: π\pi
Phase Shift: 00(00 to the right)
Vertical Shift: 00
Also, we select a few points to graph.
Find the point at x=0x = 0.
Replace the variable xx with 00 in the expression.
f(0)=cos(2(0))f\left( 0 \right) = \cos \left( {2\left( 0 \right)} \right)
Multiply 22 by 00.
f(0)=cos(0)f\left( 0 \right) = \cos \left( 0 \right)
The exact value of cos(0)\cos \left( 0 \right) is 11.
f(0)=1\Rightarrow f\left( 0 \right) = 1
The final answer is 11.
Find the point at x=π4x = \dfrac{\pi }{4}.
Replace the variable xx with π4\dfrac{\pi }{4} in the expression.
f(π4)=cos(2(π4))\Rightarrow f\left( {\dfrac{\pi }{4}} \right) = \cos \left( {2\left( {\dfrac{\pi }{4}} \right)} \right)
Cancel the common factor of 22.
Factor 22 out of 44.
f(π4)=cos(2(π2(2)))\Rightarrow f\left( {\dfrac{\pi }{4}} \right) = \cos \left( {2\left( {\dfrac{\pi }{{2\left( 2 \right)}}} \right)} \right)
Cancel the common factor.
f(π4)=cos((π2×))\Rightarrow f\left( {\dfrac{\pi }{4}} \right) = \cos \left( {\not{2}\left( {\dfrac{\pi }{{2 \times \not{2}}}} \right)} \right)
Rewrite the expression.
f(π4)=cos(π2)\Rightarrow f\left( {\dfrac{\pi }{4}} \right) = \cos \left( {\dfrac{\pi }{2}} \right)
The exact value of cos(π2)\cos \left( {\dfrac{\pi }{2}} \right) is 00.
f(π4)=0\Rightarrow f\left( {\dfrac{\pi }{4}} \right) = 0
The final answer is 00.
Also, we have to find the point at x=π2x = \dfrac{\pi }{2}.
Replace the variable xx with π2\dfrac{\pi }{2} in the expression.
f(π2)=cos(2(π2))\Rightarrow f\left( {\dfrac{\pi }{2}} \right) = \cos \left( {2\left( {\dfrac{\pi }{2}} \right)} \right)
Cancel the common factor of 22.
f(π2)=cos((π))\Rightarrow f\left( {\dfrac{\pi }{2}} \right) = \cos \left( {\not{2}\left( {\dfrac{\pi }{{\not{2}}}} \right)} \right)
Rewrite the expression.
f(π2)=cos(π)\Rightarrow f\left( {\dfrac{\pi }{2}} \right) = \cos \left( \pi \right)
Apply the reference angle by finding the angle with equivalent trigonometric values in the first quadrant.
Make the expression negative because cosine is negative in the second quadrant.
f(π2)=cos(0)\Rightarrow f\left( {\dfrac{\pi }{2}} \right) = - \cos \left( 0 \right)
The exact value of cos(0)\cos \left( 0 \right) is 11.
f(π2)=1×1\Rightarrow f\left( {\dfrac{\pi }{2}} \right) = - 1 \times 1
Multiply 1 - 1 by 11.
f(π2)=1\Rightarrow f\left( {\dfrac{\pi }{2}} \right) = - 1
The final answer is 1 - 1.
Again, we have to find the point at x=3π4x = \dfrac{{3\pi }}{4}.
Replace the variable xx with 3π4\dfrac{{3\pi }}{4} in the expression.
f(3π4)=cos(2(3π4))\Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = \cos \left( {2\left( {\dfrac{{3\pi }}{4}} \right)} \right)
Cancel the common factor of 22.
f(3π4)=cos(2(3π2(2)))\Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = \cos \left( {2\left( {\dfrac{{3\pi }}{{2\left( 2 \right)}}} \right)} \right)
Cancel the common factor.
f(3π4)=cos((3π2))\Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = \cos \left( {\not{2}\left( {\dfrac{{3\pi }}{{2 \cdot \not{2}}}} \right)} \right)
Rewrite the expression.
f(3π4)=cos(3π2)\Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = \cos \left( {\dfrac{{3\pi }}{2}} \right)
Apply the reference angle by finding the angle with equivalent trigonometric values in the first quadrant.
f(3π4)=cos(π2)\Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = - \cos \left( {\dfrac{\pi }{2}} \right)
The exact value of cos(π2)\cos \left( {\dfrac{\pi }{2}} \right) is 00.
f(3π4)=0\Rightarrow f\left( {\dfrac{{3\pi }}{4}} \right) = 0
The final answer is 00.
Find the point at x=πx = \pi .
Replace the variable xx with π\pi in the expression.
f(π)=cos(2(π))\Rightarrow f\left( \pi \right) = \cos \left( {2\left( \pi \right)} \right)
2π2\pi is a full rotation so replace with 00.
f(π)=cos(0)\Rightarrow f\left( \pi \right) = \cos \left( 0 \right)
The exact value of cos(0)\cos \left( 0 \right) is 11.
f(π)=1\Rightarrow f\left( \pi \right) = 1
The final answer is 11.
List the points in a table.

xxf(x)f\left( x \right)
0011
π4\dfrac{\pi }{4}00
π2\dfrac{\pi }{2}1 - 1
3π4\dfrac{{3\pi }}{4}00
π\pi 11

The trigonometric function can be graphed using the amplitude, period, phase shift, vertical shift and the points.
Amplitude: 11
Period: π\pi
Phase Shift: 00(00 to the right)
Vertical Shift: 00

xxf(x)f\left( x \right)
0011
π4\dfrac{\pi }{4}00
π2\dfrac{\pi }{2}1 - 1
3π4\dfrac{{3\pi }}{4}00
π\pi 11

Note: cos2x\cos 2x and 2cosx2\cos x are entirely different terms.
2cosx2\cos x is twice the cosine of angle xx. It lies between 2 - 2 and 22.
cos2x\cos 2x is the cosine of angle 2x2x. It is two times the angle xx. The value of cos2x\cos 2x is between 1 - 1 and 11.