Solveeit Logo

Question

Question: How do you graph \[y=\arccos \left( \dfrac{x}{3} \right)\]?...

How do you graph y=arccos(x3)y=\arccos \left( \dfrac{x}{3} \right)?

Explanation

Solution

In order to find the graph of the given equation in the question that is y=arccos(x3)y=\arccos \left( \dfrac{x}{3} \right), find the points that satisfy this equation and then plot them in the graph.

Complete step by step solution:
Given equation in the question is as follows
y=arccos(x3)y=\arccos \left( \dfrac{x}{3} \right)
Consider the above equation as the functionf(x)=arccos(x3)f\left( x \right)=\arccos \left( \dfrac{x}{3} \right)
To find the points that satisfy this equation first consider the point at x=3x=-3
Replace the variable xx with 3-3 in the expression, we get:
f(3)=arccos(33)=π\Rightarrow f\left( -3 \right)=\arccos \left( \dfrac{-3}{3} \right)=\pi
f(3)=π\Rightarrow f\left( -3 \right)=\pi
Now consider the point at x=32x=\dfrac{-3}{2}
Replace the variable xx with 32\dfrac{-3}{2}in the expression, we get:
f(32)=arccos(323)\Rightarrow f\left( \dfrac{-3}{2} \right)=\arccos \left( \dfrac{-\dfrac{3}{2}}{3} \right)
Simplify it further and multiply the numerator by the reciprocal of the denominator.
f(32)=arccos(3213)\Rightarrow f\left( \dfrac{-3}{2} \right)=\arccos \left( -\dfrac{3}{2}\cdot \dfrac{1}{3} \right)
Cancel the common factor of 33 to do this follow the following steps:
Move the leading negative in 32\dfrac{-3}{2}into the numerator.
f(32)=arccos(3213)\Rightarrow f\left( \dfrac{-3}{2} \right)=\arccos \left( -\dfrac{3}{2}\cdot \dfrac{1}{3} \right)
Factor 33 out of 3-3.
f(32)=arccos(3(1)213)\Rightarrow f\left( -\dfrac{3}{2} \right)=\arccos \left( \dfrac{3\left( -1 \right)}{2}\cdot \dfrac{1}{3} \right)
Cancel the common factor.
f(32)=arccos(31213)\Rightarrow f\left( -\dfrac{3}{2} \right)=\arccos \left( \dfrac{{3}\cdot -1}{2}\cdot \dfrac{1}{{{3}}} \right)
Rewrite the expression, we get:
f(32)=arccos(12)\Rightarrow f\left( -\dfrac{3}{2} \right)=\arccos \left( \dfrac{-1}{2} \right)
Move the negative in front of the fraction.
f(32)=arccos(12)\Rightarrow f\left( -\dfrac{3}{2} \right)=\arccos \left( -\dfrac{1}{2} \right)
The exact value of arccos(12)\arccos \left( -\dfrac{1}{2} \right) is 2π3\dfrac{2\pi }{3}.
f(32)=2π3\Rightarrow f\left( -\dfrac{3}{2} \right)=\dfrac{2\pi }{3}
After this consider the point at x=0x=0
Replace the variable xx with 00 in the expression, we get:
f(0)=arccos(03)\Rightarrow f\left( 0 \right)=\arccos \left( \dfrac{0}{3} \right)
Simplify it further and divide 00 by 33, we get:
f(0)=arccos(0)\Rightarrow f\left( 0 \right)=\arccos \left( 0 \right)
The exact value of arccos(0)\arccos \left( 0 \right) is π2\dfrac{\pi }{2}.
f(0)=π2\Rightarrow f\left( 0 \right)=\dfrac{\pi }{2}
Now find for the point at x=32x=\dfrac{3}{2}.
Replace the variable xx with 32\dfrac{3}{2} in the expression, we get:
f(32)=arccos(323)\Rightarrow f\left( \dfrac{3}{2} \right)=\arccos \left( \dfrac{\dfrac{3}{2}}{3} \right)
Simplify it further and multiply the numerator by the reciprocal of the denominator.
f(32)=arccos(3213)\Rightarrow f\left( \dfrac{3}{2} \right)=\arccos \left( \dfrac{3}{2}\cdot \dfrac{1}{3} \right)
Cancel the common factor of 33, we get
f(32)=arccos(12)\Rightarrow f\left( \dfrac{3}{2} \right)=\arccos \left( \dfrac{1}{2} \right)
The exact value of arccos(12)\arccos \left( \dfrac{1}{2} \right)is π3\dfrac{\pi }{3}.
f(32)=π3\Rightarrow f\left( \dfrac{3}{2} \right)=\dfrac{\pi }{3}
Now at last find the point at x=3x=3
Replace the variable xxwith 33 in the expression, we get:
f(3)=arccos(33)\Rightarrow f\left( 3 \right)=\arccos \left( \dfrac{3}{3} \right)
Simplify it further and divide 33 by 33, we get:
f(3)=arccos(1)\Rightarrow f\left( 3 \right)=\arccos \left( 1 \right)
The exact value of arccos(1)\arccos \left( 1 \right)is 00.
f(3)=0\Rightarrow f\left( 3 \right)=0
Now list all the points in a table and this trigonometric function can be graphed by plotting these points.

x & f\left( x \right) \\\ -3 & \pi \\\ -\dfrac{3}{2} & \dfrac{2\pi }{3} \\\ 0 & \dfrac{\pi }{2} \\\ \dfrac{3}{2} & \dfrac{\pi }{3} \\\ 3 & 0 \\\ \end{matrix}$$ The graph of the function $$f\left( x \right)=\arccos \left( \dfrac{x}{3} \right)$$ is as follows: ![](https://www.vedantu.com/question-sets/7d0d650e-2de8-4aa8-bb43-49a3c6fb245c7937176888983354512.png) **Note:** Students generally make calculation mistakes while calculating the points that satisfy the graph. It's important to remember the trigonometric values and recheck the calculations once done.