Solveeit Logo

Question

Question: How do you graph \(y = - 2\sin 2x\)?...

How do you graph y=2sin2xy = - 2\sin 2x?

Explanation

Solution

First find amplitude, period, phase shift, and vertical shift for given periodic function. Select a few points to graph. Find the points at x=0x = 0, x=π4x = \dfrac{\pi }{4}, x=π2x = \dfrac{\pi }{2}, x=3π4x = \dfrac{{3\pi }}{4}, x=πx = \pi . List the points in a table. Then graph the trigonometric function using the amplitude, period, phase shift, vertical shift and the points.

Formula used:
For the graph of y=asin(bxc)+dy = a\sin \left( {bx - c} \right) + d
Amplitude=a = \left| a \right|
Period=2πb = \dfrac{{2\pi }}{{\left| b \right|}}
Phase Shift=cb = \dfrac{c}{b}
Vertical Shift=d = d

Complete step by step solution:
We will use the form asin(bxc)+da\sin \left( {bx - c} \right) + d to find the amplitude, period, phase shift, and vertical shift.
Compare the given equation y=2sin2xy = - 2\sin 2x with asin(bxc)+da\sin \left( {bx - c} \right) + d and find variables a,b,ca,b,c and dd.
a=2a = - 2, b=2b = 2, c=0c = 0 and d=0d = 0.
Find the amplitude a\left| a \right|.
Here, a=2a = - 2.
Amplitude, a=2\left| a \right| = 2.
Now, find the period using the formula 2πb\dfrac{{2\pi }}{{\left| b \right|}}.
So, we will calculate the period of the function using 2πb\dfrac{{2\pi }}{{\left| b \right|}}.
Period: 2πb\dfrac{{2\pi }}{{\left| b \right|}}
Replace bb with 11 in the formula for period.
Period: 2π2\dfrac{{2\pi }}{{\left| 2 \right|}}
Solve the equation.
Here, we can observe that the absolute value is the distance between a number and zero.
The distance between 00 and 22 is 22.
Period: 2π2\dfrac{{2\pi }}{2}
Divide 2π2\pi by 22.
Period: π\pi
Now, we will find the phase shift using the formula cb\dfrac{c}{b}.
So, we will calculate the phase shift of the function from cb\dfrac{c}{b}.
Phase Shift: cb\dfrac{c}{b}
Here, replace the values of cc and bb in the equation for phase shift.
Phase Shift: 02\dfrac{0}{2}
Divide 00 by 22.
Phase Shift: 00
Find the vertical shift dd.
Vertical Shift: 00
List the properties of the trigonometric function.
Amplitude: 22
Period: π\pi
Phase Shift: 00(00 to the left)
Vertical Shift: 00
Select a few points to graph.
Find the point at x=0x = 0.
Replace the variable xx with 00 in the expression.
f(0)=2sin(0)f\left( 0 \right) = - 2\sin \left( 0 \right)
Simplify the result.
The exact value of sin(0)\sin \left( 0 \right) is 00.
f(0)=2×0f\left( 0 \right) = - 2 \times 0
Multiply 2 - 2 with 00.
f(0)=0f\left( 0 \right) = 0
The final answer is 00.
Find the point at x=π4x = \dfrac{\pi }{4}.
Replace the variable xx with π4\dfrac{\pi }{4} in the expression.
f(π4)=2sin(2×π4)f\left( {\dfrac{\pi }{4}} \right) = - 2\sin \left( {2 \times \dfrac{\pi }{4}} \right)
Simplify the result.
The exact value of sin(π2)\sin \left( {\dfrac{\pi }{2}} \right) is 11.
f(π4)=2f\left( {\dfrac{\pi }{4}} \right) = - 2
The final answer is 2 - 2.
Find the point at x=π2x = \dfrac{\pi }{2}.
Replace the variable xx with π2\dfrac{\pi }{2} in the expression.
f(π2)=2sin(2×π2)f\left( {\dfrac{\pi }{2}} \right) = - 2\sin \left( {2 \times \dfrac{\pi }{2}} \right)
Simplify the result.
The exact value of sin(π)\sin \left( \pi \right) is 00.
f(π2)=0f\left( {\dfrac{\pi }{2}} \right) = 0
The final answer is 00.
Find the point at x=3π4x = \dfrac{{3\pi }}{4}.
Replace the variable xx with 3π4\dfrac{{3\pi }}{4} in the expression.
f(3π4)=2sin(2×3π4)f\left( {\dfrac{{3\pi }}{4}} \right) = - 2\sin \left( {2 \times \dfrac{{3\pi }}{4}} \right)
Simplify the result.
The exact value of sin(3π2)\sin \left( {\dfrac{{3\pi }}{2}} \right) is 1 - 1.
f(3π4)=2f\left( {\dfrac{{3\pi }}{4}} \right) = 2
The final answer is 22.
Find the point at x=πx = \pi .
Replace the variable xx with π\pi in the expression.
f(π)=2sin(2π)f\left( \pi \right) = - 2\sin \left( {2\pi } \right)
Simplify the result.
The exact value of sin(2π)\sin \left( {2\pi } \right) is 00.
f(π)=2×0f\left( \pi \right) = - 2 \times 0
Multiply 2 - 2 with 00.
f(π)=0f\left( \pi \right) = 0
The final answer is 00.
List the points in a table.

xxf(x)f\left( x \right)
0000
π4\dfrac{\pi }{4}2 - 2
π2\dfrac{\pi }{2}00
3π4\dfrac{{3\pi }}{4}22
π\pi 00

The trigonometric function can be graphed using the amplitude, period, phase shift, vertical shift and the points.
Amplitude: 22
Period: π\pi
Phase Shift: 00(00 to the left)
Vertical Shift: 00

xxf(x)f\left( x \right)
0000
π4\dfrac{\pi }{4}2 - 2
π2\dfrac{\pi }{2}00
3π4\dfrac{{3\pi }}{4}22
π\pi 00

Note: 2sin2x2\sin 2x and 2sinx2\sin x are entirely different terms.
2sinx2\sin x is double the sine function of angle xx. It lies between 2 - 2 and 22.
2sin2x2\sin 2x is twice the sine of angle 2x2x. It is 22 times the angle xx. The value of 2sin2x2\sin 2x is between 2 - 2 and 22.