Solveeit Logo

Question

Question: How do you get the exact value of \( {{\csc }^{-1}}\left( 2 \right) \) ?...

How do you get the exact value of csc1(2){{\csc }^{-1}}\left( 2 \right) ?

Explanation

Solution

Hint : We convert the inverse function from csc1(x){{\csc }^{-1}}\left( x \right) to sin1(1x){{\sin }^{-1}}\left( \dfrac{1}{x} \right) . Then we explain the function arcsin(x)\arcsin \left( x \right) . We express the inverse function of sin in the form of arcsin(x)=sin1x\arcsin \left( x \right)={{\sin }^{-1}}x . We draw the graph of arcsin(x)\arcsin \left( x \right) and the line x=12x=\dfrac{1}{2} to find the intersection point as the solution.

Complete step-by-step answer :
First, we convert the inverse function from csc1(x){{\csc }^{-1}}\left( x \right) to sin1(1x){{\sin }^{-1}}\left( \dfrac{1}{x} \right) .
We know that csc1(x)=sin1(1x){{\csc }^{-1}}\left( x \right)={{\sin }^{-1}}\left( \dfrac{1}{x} \right) . The condition is x>0x>0 .
For our problem value of xx is 2 which is greater than 0. So, csc1(2)=sin1(12){{\csc }^{-1}}\left( 2 \right)={{\sin }^{-1}}\left( \dfrac{1}{2} \right) .
The arcus function represents the angle which on ratio sin gives the value.
So, arcsin(x)=sin1x\arcsin \left( x \right)={{\sin }^{-1}}x . If arcsin(x)=sin1x=α\arcsin \left( x \right)={{\sin }^{-1}}x=\alpha then we can say sinα=x\sin \alpha =x .
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of 2π2\pi .
The general solution for that value where sinα=x\sin \alpha =x will be nπ±(1)nα,nZn\pi \pm {{\left( -1 \right)}^{n}}\alpha ,n\in \mathbb{Z} .
But for arcsin(x)\arcsin \left( x \right) , we won’t find the general solution. We use the principal value. For ratios sin we have π2arcsin(x)π2-\dfrac{\pi }{2}\le \arcsin \left( x \right)\le \dfrac{\pi }{2} .
We now place the value of x=12x=\dfrac{1}{2} in the function of arcsin(x)\arcsin \left( x \right) .
Let the angle be θ\theta for which arcsin(12)=θ\arcsin \left( \dfrac{1}{2} \right)=\theta . This gives sinθ=12\sin \theta =\dfrac{1}{2} .
We know that sinθ=12=sin(π6)\sin \theta =\dfrac{1}{2}=\sin \left( \dfrac{\pi }{6} \right) which gives θ=π6\theta =\dfrac{\pi }{6}
We get the value of y coordinates as π6\dfrac{\pi }{6} . Therefore, the exact value of csc1(2){{\csc }^{-1}}\left( 2 \right) is π6\dfrac{\pi }{6} .
So, the correct answer is “ π6\dfrac{\pi }{6} ”.

Note : If we are finding an arcsin(x)\arcsin \left( x \right) of a positive value, the answer is between 0arcsin(x)π20\le \arcsin \left( x \right)\le \dfrac{\pi }{2} . If we are finding the arcsin(x)\arcsin \left( x \right) of a negative value, the answer is between π2arccos(x)0-\dfrac{\pi }{2}\le \arccos \left( x \right)\le 0 .