Solveeit Logo

Question

Question: How do you find \[y''\] by implicit differentiation for \[4{x^2} + 3{y^2} = 6\]?...

How do you find yy'' by implicit differentiation for 4x2+3y2=64{x^2} + 3{y^2} = 6?

Explanation

Solution

Here we have to double differentiate the given equation. we will differentiate both sides of the given equation with respect to xx. Then we will take all the dydx\dfrac{{dy}}{{dx}} terms on one side and then again differentiate both sides with respect to xx. Finally, we will replace the value of dydx\dfrac{{dy}}{{dx}} in the equation and solve it to get the required value.

Complete step-by-step answer:
We have to find yy'' of
4x2+3y2=64{x^2} + 3{y^2} = 6
Now differentiating both the side of the equation with respect to xx, we get
d(4x2)dx+d(3y2)dx=d(6)dx\Rightarrow \dfrac{{d\left( {4{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {3{y^2}} \right)}}{{dx}} = \dfrac{{d\left( 6 \right)}}{{dx}}
Now using the formula ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} and d(k)dx=0\dfrac{{d\left( k \right)}}{{dx}} = 0, we get
4×2×x21+3×2×y21dydx=0 8x+6ydydx=0\begin{array}{l} \Rightarrow 4 \times 2 \times {x^{2 - 1}} + 3 \times 2 \times {y^{2 - 1}}\dfrac{{dy}}{{dx}} = 0\\\ \Rightarrow 8x + 6y\dfrac{{dy}}{{dx}} = 0\end{array}
Subtracting 8x8x from both sides, we get
6ydydx=8x\Rightarrow 6y\dfrac{{dy}}{{dx}} = - 8x
dydx=8x6y=4x3y\Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{{8x}}{{6y}} = - \dfrac{{4x}}{{3y}}…………………….(1)\left( 1 \right)
Now, differentiating equation (1)\left( 1 \right) with respect to xx, we get
ddx(dydx)=ddx(4x3y)\Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right) = \dfrac{d}{{dx}}\left( {\dfrac{{ - 4x}}{{3y}}} \right)
Now using quotient rule ddx(uv)=vdudxudvdxv2\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}} on right side, we get
d2ydx2=3y×d(4x)dx(4x)d(3y)dx(3y)2 d2ydx2=3y×(4)(4x)×3dydx9y2\begin{array}{l} \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{3y \times \dfrac{{d\left( { - 4x} \right)}}{{dx}} - \left( { - 4x} \right)\dfrac{{d\left( {3y} \right)}}{{dx}}}}{{{{\left( {3y} \right)}^2}}}\\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{3y \times \left( { - 4} \right) - \left( { - 4x} \right) \times 3\dfrac{{dy}}{{dx}}}}{{9{y^2}}}\end{array}
Multiplying the terms, we get
d2ydx2=12y+12xdydx9y2\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 12y + 12x\dfrac{{dy}}{{dx}}}}{{9{y^2}}}
Next, replacing the value of dydx\dfrac{{dy}}{{dx}} in above equation, we get
d2ydx2=12y+(12x×4x3y)9y2\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 12y + \left( {12x \times \dfrac{{ - 4x}}{{3y}}} \right)}}{{9{y^2}}}
Multiplying the terms, we get
d2ydx2=12y+(16x2y)9y2\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 12y + \left( {\dfrac{{ - 16{x^2}}}{y}} \right)}}{{9{y^2}}}
Taking L.C.M in the numerator, we get
d2ydx2=12y216x2y9y2 d2ydx2=12y216x29y3\begin{array}{l} \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{\dfrac{{ - 12{y^2} - 16{x^2}}}{y}}}{{9{y^2}}}\\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 12{y^2} - 16{x^2}}}{{9{y^3}}}\end{array}
We can further simplify the above value by taking 4 - 4 common in numerator as,
d2ydx2=4(3y2+4x2)9y3\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 4\left( {3{y^2} + 4{x^2}} \right)}}{{9{y^3}}}
Substituting the value of the given equation 4x2+3y2=64{x^2} + 3{y^2} = 6 in above equation, we get
d2ydx2=4×69y3 d2ydx2=83y3\begin{array}{l} \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 4 \times 6}}{{9{y^3}}}\\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{ - 8}}{{3{y^3}}}\end{array}

So the value of yy'' is 83y3\dfrac{{ - 8}}{{3{y^3}}}.

Note:
Implicit differentiation is used when we have implicit functions where one function doesn’t lead to another one. Implicit differentiation is done by using the chain rule and viewing yy as an implicit function of xx. There are various case of implicit function which in which we have yy equal to a function that contains x,yx,y' or yy' in similar way we can have xx equal to a function that contains y,xy,x' or just xx'.