Question
Question: How do you find \[u=\dfrac{1}{2}v-w+2z\] and given that \[v=\ <4,-3,5>,\ w=\ <2,6,-1>\] and \[z=<3,0...
How do you find u=21v−w+2z and given that v= <4,−3,5>, w= <2,6,−1> and z=<3,0,4>?
Solution
In the given question, we have been asked to find the value of a given expression and we have given three vectors i.e. v= <4,−3,5>, w= <2,6,−1> and z=<3,0,4>. In the given each vector we have three components that represent ‘x’, ‘y’ and ‘z’ directions. So for adding the vectors first we need to add only the values of x-direction and then we add the values of y-direction and then adding the values of z-direction and then write it in the given vector form that is in the question. For subtracting the two vectors, we need to subtract the values of x-direction then subtract the values of y-direction and same with the values of z-direction then write it in the vector form. To multiply a scalar unit by vector, we need to multiply each component of the vector by that scalar unit. Later we will simplify the given expression and we will get our required solution.
Complete step by step answer:
We have given three vectors,