Solveeit Logo

Question

Question: How do you find the zeros, real and imaginary, of \(y = - {x^2} - 3x + 11\) using the quadratic form...

How do you find the zeros, real and imaginary, of y=x23x+11y = - {x^2} - 3x + 11 using the quadratic formula?

Explanation

Solution

First, compare the given quadratic equation to the standard quadratic equation and find the value of numbers aa, bb and cc in the given equation. Then, substitute the values of aa, bb and cc in the formula of discriminant and find the discriminant of the given equation. Finally, put the values of aa, bb and DD in the roots of the quadratic equation formula and get the desired result.
Formula used:
The quantity D=b24acD = {b^2} - 4ac is known as the discriminant of the equation ax2+bx+c=0a{x^2} + bx + c = 0 and its roots are given by
x=b±D2ax = \dfrac{{ - b \pm \sqrt D }}{{2a}} or x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}

Complete step-by-step solution:
We know that an equation of the form ax2+bx+c=0a{x^2} + bx + c = 0, a,b,c,xRa,b,c,x \in R, is called a Real Quadratic Equation.
The numbers aa, bb and cc are called the coefficients of the equation.
The quantity D=b24acD = {b^2} - 4ac is known as the discriminant of the equation ax2+bx+c=0a{x^2} + bx + c = 0 and its roots are given by
x=b±D2ax = \dfrac{{ - b \pm \sqrt D }}{{2a}} or x=b±b24ac2ax = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}
Next, compare x23x+11=0 - {x^2} - 3x + 11 = 0 quadratic equation to standard quadratic equation and find the value of numbers aa, bb and cc.
Comparing x23x+11=0 - {x^2} - 3x + 11 = 0 with ax2+bx+c=0a{x^2} + bx + c = 0, we get
a=1a = - 1, b=3b = - 3 and c=11c = 11
Now, substitute the values of aa, bb and cc in D=b24acD = {b^2} - 4ac and find the discriminant of the given equation.
D=(3)24(1)(11)D = {\left( { - 3} \right)^2} - 4\left( { - 1} \right)\left( {11} \right)
After simplifying the result, we get
D=9+44\Rightarrow D = 9 + 44
D=53\Rightarrow D = 53
Which means the given equation has real roots.
Now putting the values of aa, bb and DD in x=b±D2ax = \dfrac{{ - b \pm \sqrt D }}{{2a}}, we get
x=(3)±532×(1)x = \dfrac{{ - \left( { - 3} \right) \pm \sqrt {53} }}{{2 \times \left( { - 1} \right)}}
It can be written as
x=3±532\Rightarrow x = - \dfrac{{3 \pm \sqrt {53} }}{2}
x=32532\Rightarrow x = - \dfrac{3}{2} - \dfrac{{\sqrt {53} }}{2} and x=32+532x = - \dfrac{3}{2} + \dfrac{{\sqrt {53} }}{2}
So, x=32532x = - \dfrac{3}{2} - \dfrac{{\sqrt {53} }}{2} and x=32+532x = - \dfrac{3}{2} + \dfrac{{\sqrt {53} }}{2} are roots/solutions of equation x23x+11=0 - {x^2} - 3x + 11 = 0.
Therefore, the real zeros of y=x23x+11y = - {x^2} - 3x + 11 are x=3±532x = - \dfrac{{3 \pm \sqrt {53} }}{2}.

Note: We can check whether x=3±532x = - \dfrac{{3 \pm \sqrt {53} }}{2} are roots/solutions of equation x25x35=0 - {x^2} - 5x - 35 = 0 by putting the value of xx in given equation.
Putting x=32532x = - \dfrac{3}{2} - \dfrac{{\sqrt {53} }}{2} in LHS of equation x23x+11=0 - {x^2} - 3x + 11 = 0.
LHS=(32532)23(32532)+11{\text{LHS}} = - {\left( { - \dfrac{3}{2} - \dfrac{{\sqrt {53} }}{2}} \right)^2} - 3\left( { - \dfrac{3}{2} - \dfrac{{\sqrt {53} }}{2}} \right) + 11
On simplification, we get
LHS=945343532+92+3532+11\Rightarrow {\text{LHS}} = - \dfrac{9}{4} - \dfrac{{53}}{4} - \dfrac{{3\sqrt {53} }}{2} + \dfrac{9}{2} + \dfrac{{3\sqrt {53} }}{2} + 11
LHS=0\Rightarrow {\text{LHS}} = 0
LHS=RHS\therefore {\text{LHS}} = {\text{RHS}}
Thus, x=32532x = - \dfrac{3}{2} - \dfrac{{\sqrt {53} }}{2} is a solution of equation x23x+11=0 - {x^2} - 3x + 11 = 0.
Putting x=32+532x = - \dfrac{3}{2} + \dfrac{{\sqrt {53} }}{2} in LHS of equation x23x+11=0 - {x^2} - 3x + 11 = 0.
LHS=(32+532)23(32+532)+11{\text{LHS}} = - {\left( { - \dfrac{3}{2} + \dfrac{{\sqrt {53} }}{2}} \right)^2} - 3\left( { - \dfrac{3}{2} + \dfrac{{\sqrt {53} }}{2}} \right) + 11
On simplification, we get
LHS=94534+3532+923532+11\Rightarrow {\text{LHS}} = - \dfrac{9}{4} - \dfrac{{53}}{4} + \dfrac{{3\sqrt {53} }}{2} + \dfrac{9}{2} - \dfrac{{3\sqrt {53} }}{2} + 11
LHS=0\Rightarrow {\text{LHS}} = 0
LHS=RHS\therefore {\text{LHS}} = {\text{RHS}}
Thus, x=32+532x = - \dfrac{3}{2} + \dfrac{{\sqrt {53} }}{2} is a solution of equation x23x+11=0 - {x^2} - 3x + 11 = 0.
Final solution: Therefore, the real zeros of y=x23x+11y = - {x^2} - 3x + 11 are x=3±532x = - \dfrac{{3 \pm \sqrt {53} }}{2}.