Solveeit Logo

Question

Question: How do you find the volume of the region below \(y=-3x+6\) and enclosed by the \(y\)-axis from \(0\)...

How do you find the volume of the region below y=3x+6y=-3x+6 and enclosed by the yy-axis from 00 to 22, rotated about the xx-axis?

Explanation

Solution

In this question we have to find the volume of a region which is enclosed by the given points. We will first write the region in terms of all the limitations of the region and then plot them on the graph to get the points of the shape. We will then split the plane into two shapes and find the volume for both the shapes and add them to get the final volume.

Complete step-by-step solution:
We know that the region lies below y=3x+6y= -3x+6, is enclosed by the yy-axis from 00 to 22 therefore, we can write:
y0y\ge 0
y0y\le 0
y3x+6y\le -3x+6
x0x\ge 0
On drawing the figure on the graph, we get:

Now the formula for calculating the volume of the solid from revolution around the xx-axis is:
V=πabf2(x)dxV=\pi \int\limits_{a}^{b}{{{f}^{2}}\left( x \right)dx}
But we have a composite function since the plane has variable values of yy when xx changes therefore, we can write our function as:
f\left( x \right)=\left\\{ \begin{matrix} y=2 & \text{if 0}\le \text{x}\le \dfrac{4}{3} \\\ y=-3x+6 & \text{if }\dfrac{4}{3}\le \text{x}\le 2 \\\ \end{matrix} \right.
Therefore, we will break our solid into two shapes, a cylinder from x=0x=0 to x=43x=\dfrac{4}{3} and a cone from x=43x=\dfrac{4}{3} to x=2x=2.
We have the total volume as:
Vtot=Vcylinder+Vcone{{V}_{tot}}={{V}_{cylinder}}+{{V}_{cone}}
Now we have the volume of the cylinder as:
Vcylinder=π043f2(x)dx\Rightarrow {{V}_{cylinder}}=\pi \int\limits_{0}^{\dfrac{4}{3}}{{{f}^{2}}\left( x \right)dx}
On substituting the value of f(x)=2f\left( x \right)=2, we get:
Vcylinder=π04322dx\Rightarrow {{V}_{cylinder}}=\pi \int\limits_{0}^{\dfrac{4}{3}}{{{2}^{2}}dx}
On simplifying, we get:
Vcylinder=π0434dx\Rightarrow {{V}_{cylinder}}=\pi \int\limits_{0}^{\dfrac{4}{3}}{4dx}
Now we know kdx=kx+c\int{k}dx=kx+c therefore, we get:
Vcylinder=π[4x]043\Rightarrow {{V}_{cylinder}}=\pi \left[ 4x \right]_{0}^{\dfrac{4}{3}}
On substituting the values, we get:
Vcylinder=π(4(43)4(0))\Rightarrow {{V}_{cylinder}}=\pi \left( 4\left( \dfrac{4}{3} \right)-4\left( 0 \right) \right)
On simplifying, we get:
Vcylinder=16π3\Rightarrow {{V}_{cylinder}}=\dfrac{16\pi }{3}
Now we have the volume of the cone as:
Vcone=π043(3x+6)2dx\Rightarrow {{V}_{cone}}=\pi \int\limits_{0}^{\dfrac{4}{3}}{{{\left( -3x+6 \right)}^{2}}dx}
On expanding the terms, we get:
Vcone=π043(9x236x+36)dx\Rightarrow {{V}_{cone}}=\pi \int\limits_{0}^{\dfrac{4}{3}}{\left( 9{{x}^{2}}-36x+36 \right)dx}
Now we know that xn=xn+1n+1+c\int{{{x}^{n}}}=\dfrac{{{x}^{n+1}}}{n+1}+ctherefore, we get:
Vcone=π[3x318x2+36x]432\Rightarrow {{V}_{cone}}=\pi \left[ 3{{x}^{3}}-18{{x}^{2}}+36x \right]_{\dfrac{4}{3}}^{2}
On substituting the values, we get:
Vcone=π(3×2318×22+36×23(43)3+18(43)236(43))\Rightarrow {{V}_{cone}}=\pi \left( 3\times {{2}^{3}}-18\times {{2}^{2}}+36\times 2-3{{\left( \dfrac{4}{3} \right)}^{3}}+18{{\left( \dfrac{4}{3} \right)}^{2}}-36\left( \dfrac{4}{3} \right) \right)
On simplifying, we get:
Vcone=π(2472+72649+288948)\Rightarrow {{V}_{cone}}=\pi \left( 24-72+72-\dfrac{64}{9}+\dfrac{288}{9}-48 \right)
On further simplification, we get:
Vcone=π(2169649+2889)\Rightarrow {{V}_{cone}}=\pi \left( -\dfrac{216}{9}-\dfrac{64}{9}+\dfrac{288}{9} \right)
On adding all the fractions, we get:
Vcone=8π9\Rightarrow {{V}_{cone}}=\dfrac{8\pi }{9}
Therefore, the total volume will be:
Vtot=Vcylinder+Vcone{{V}_{tot}}={{V}_{cylinder}}+{{V}_{cone}}
On substituting the values, we get:
Vtot=16π3+8π9{{V}_{tot}}=\dfrac{16\pi }{3}+\dfrac{8\pi }{9}
On simplifying, we get:
Vtot=56π9{{V}_{tot}}=\dfrac{56\pi }{9}, which is the required solution.

Note: In this question we have used integral calculus to find the volume of the given solid. We used the concept of definite integrals where integration is done on a specific figure also called as a plane between two limits. There also exists indefinite integrals which do not have any limiting value. Definite integrals are used to find the area and volumes of planes and solids respectively.